菜农定期使用低害杀虫农药对蔬菜进行喷洒, 以防止害虫的危害, 但采集上市时蔬菜仍存有少量的残留农药, 食用时需要用清水清洗干净, 下表是用清水(单位:千克) 清洗该蔬菜千克后, 蔬菜上残留的农药(单位:微克) 的统计表:












 
(1)在下面的坐标系中, 描出散点图, 并判断变量的相关性;
(2)若用解析式作为蔬菜农药残量与用水量的回归方程, 令,计算平均值,完成以下表格(填在答题卡中) ,求出的回归方程.(精确到)














 
 
 
 
 

 
 
 
 
 
 
(3)对于某种残留在蔬菜上的农药,当它的残留量低于微克时对人体无害, 为了放心食用该蔬菜, 请
估计需要用多少千克的清水清洗一千克蔬菜?(精确到,参考数据)
(附:线性回归方程中系数计算公式分别为;
,)
当前题号:1 | 题型:解答题 | 难度:0.99
中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值;
(Ⅱ)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(Ⅰ)中的值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:
(Ⅲ)设出油量与勘探深度的比值不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.
当前题号:2 | 题型:解答题 | 难度:0.99
某城市城镇化改革过程中最近五年居民生活用水量逐年上升,下表是2011年至2015年的统计数据:
年份
2011
2012
2013
2014
2015
居民生活用水量(万吨)
236
246
257
276
286
 
(1)利用所给数据求年居民生活用水量与年份之间的回归直线方程
(2)根据改革方案,预计在2020年底城镇改革结束,到时候居民的生活用水量将趋于稳定,预测该城市2023年的居民生活用水量.
参考公式:
当前题号:3 | 题型:解答题 | 难度:0.99
张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如下表:
年龄(岁)
7
8
9
10
11
12
13
身高(cm)
121
128
135
141
148
154
160
 
(Ⅰ)求身高关于年龄的线性回归方程;
(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
当前题号:4 | 题型:解答题 | 难度:0.99
某商场营销人员进行某商品的市场营销调查时发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:
反馈点数t
1
2
3
4
5
销量(百件)/天
0.5
0.6
1
1.4
1.7
 
(Ⅰ)经分析发现,可用线性回归模型拟合当地该商品销量(千件)与返还点数之间的相关关系.试预测若返回6个点时该商品每天的销量;
(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间

(百分比)

[1,3)
[3,5)
[5,7)
[7,9)
[9,11)
[11,13)
频数
20
60
60
30
20
10
 
(1)求这200位拟购买该商品的消费者对返点点数的心理预期值的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);
(2)将对返点点数的心理预期值在的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中 “欲望紧缩型”消费者的人数为随机变量,求的分布列及数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
某商场营销人员进行某商品的市场营销调查时发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:
反馈点数t
1
2
3
4
5
销量(百件)/天
0.5
0.6
1
1.4
1.7
 
(Ⅰ)经分析发现,可用线性回归模型拟合当地该商品销量(千件)与返还点数之间的相关关系.试预测若返回6个点时该商品每天的销量;
(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间

(百分比)

[1,3)
[3,5)
[5,7)
[7,9)
[9,11)
[11,13)
频数
20
60
60
30
20
10
 
(1)求这200位拟购买该商品的消费者对返点点数的心理预期值的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);
(2)将对返点点数的心理预期值在的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中 “欲望紧缩型”消费者的人数为随机变量,求的分布列及数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
假设关于某市房屋面积(平方米)与购房费用(万元),有如下的统计数据:
 (平方米)
80
90
100
110
 (万元)
42
46
53
59
 
由资料表明呈线性相关.
(1)求回归直线方程;
(2)若在该市购买120平方米的房屋,估计购房费用是多少?
当前题号:7 | 题型:解答题 | 难度:0.99
某种产品的广告费用支出(万元)与销售额y(万元)之间有如下的对应数据
(1)求回归直线方程;
(2)据此估计广告费用为10销售收入的值
(参考公式:

2
4
5
6
8

30
40
60
50
70
 
当前题号:8 | 题型:解答题 | 难度:0.99
假设关于某设备的使用年限x和所支出的维修费用 y(万元),有如下的统计资料:
x
2
3
4
5
6
y
2.2
3.8
5.5
6.5
7.0
 
若由资料可知yx呈线性相关关系,且线性回归方程为ya+bx,其中已知b=1.23,请估计使用年限为20年时,维修费用约为_________
当前题号:9 | 题型:填空题 | 难度:0.99
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日到3日的每天昼夜温差与实验室每天每100颗种子发芽数,得到如下资料:
日期
12月1日
12月2日
12月3日
温差x()
11
13
12
发芽数y(颗)
25
30
26
 
该农科所确定的研究方案是:先从这3组数据求出线性回归方程,再对12月4日的数据进行推测和检验.则根据以上3天的数据,求出y关于x的线性回归方程是
A.
B.
C.
D.
当前题号:10 | 题型:单选题 | 难度:0.99