- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制散点图
- + 根据散点图判断是否线性相关
- 由散点图画求近似回归直线
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某企业为确定下一年投入某种产品的研发费用,需了解年研发费用
(单位:千万元)对年销售量
(单位:千万件)的影响,统计了近
年投入的年研发费用
与年销售量
的数据,得到散点图如图所示:

(Ⅰ)利用散点图判断,
和
(其中
,
为大于
的常数)哪一个更适合作为年研发费用
和年销售量
的回归方程类型(只要给出判断即可,不必说明理由);
(Ⅱ)对数据作出如下处理:令
,
,得到相关统计量的值如下表:

根据(Ⅰ)的判断结果及表中数据,求
关于
的回归方程;
(Ⅲ)已知企业年利润
(单位:千万元)与
,
的关系为
(其中
),根据(Ⅱ)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
,






(Ⅰ)利用散点图判断,







(Ⅱ)对数据作出如下处理:令



根据(Ⅰ)的判断结果及表中数据,求


(Ⅲ)已知企业年利润





附:对于一组数据




近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付,某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),绘制了如图所示的散点图:

(I)根据散点图判断在推广期内,
与
(c,d为为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(I)的判断结果求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次.
参考数据:
其中
,
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
。

(I)根据散点图判断在推广期内,


(Ⅱ)根据(I)的判断结果求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次.
参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
4 | 62 | 1.54 | 2535 | 50.12 | 140 | 3.47 |
其中


附:对于一组数据






如图是根据变量
,
的观测数据
(
1,2,3…,10)得到的散点图,由这些散点图可以判断变量
,
具有相关关系的图是( )

① ② ③ ④







① ② ③ ④
A.①② | B.②③ | C.①④ | D.③④ |
某基地蔬菜大棚采用水培、无土栽培方式种植各类菠菜.根据统计,该基地的西红种增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.依据折线图及其提供的数据,是否可用线性回归模型拟合y与x的关系?如果可以,请计算相关系数r并加以说明(精确到0.01),(若
,则线性相关程度很高,可用线性回归模型拟合)

附:相关系数公式
,参考数据:
,
.


附:相关系数公式



某企业为确定下一年投入某种产品的研发费用,需了解年研发费用
(单位:千万元)对年销售量
(单位:千万件)的影响,统计了近
年投入的年研发费用
与年销售量
的数据,得到散点图如图所示.

(1)利用散点图判断
和
(其中
均为大于
的常数)哪一个更适合作为年销售量
和年研发费用
的回归方程类型(只要给出判断即可,不必说明理由)
(2)对数据作出如下处理,令
,得到相关统计量的值如下表:根据第(1)问的判断结果及表中数据,求
关于
的回归方程;
(3)已知企业年利润
(单位:千万元)与
的关系为
(其中
),根据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
,






(1)利用散点图判断






(2)对数据作出如下处理,令



![]() | ![]() | ![]() | ![]() |
15 | 15 | 28.25 | 56.5 |
(3)已知企业年利润




附:对于一组数据




下面给出了根据我国2012年~2018年水果人均占有量
(单位:
)和年份代码
绘制的散点图和线性回归方程的残差图(2012年~2018年的年份代码
分别为1~7).

(1)根据散点图分析
与
之间的相关关系;
(2)根据散点图相应数据计算得
,求
关于
的线性回归方程;
(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果.(精确到0.01)
附:回归方程
中斜率和截距的最小二乘估计公式分别为:
.





(1)根据散点图分析


(2)根据散点图相应数据计算得



(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果.(精确到0.01)
附:回归方程

