- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 相关关系
- 相关关系与函数关系的概念及辨析
- 判断两个变量是否有相关关系
- 判断正、负相关
- 散点图
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某同学根据一组x,y的样本数据,求出线性回归方程
和相关系数r,下列说法正确的是( )

A.y与x是函数关系 | B.![]() |
C.r只能大于0 | D.|r|越接近1,两个变量相关关系越弱 |
“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展.下表是近几年我国某地区新能源乘用车的年销售量与年份的统计表:

某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:

(1)求新能源乘用车的销量
关于年份
的线性相关系数
,并判断
与
是否线性相关;
(2)请将上述
列联表补充完整,并判断是否有
的把握认为购车车主是否购置新能源乘用车与性别有关;
(3)若以这30名购车车主中购置新能源乘用车的车主性别比例作为该地区购置新能源乘用车的车主性别比例,从该地区购置新能源乘用车的车主中随机选取50人,记选到女性车主的人数为
,求
的数学期望与方差.
参考公式:
,
,其中
.
,若
,则可判断
与
线性相交.

某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:

(1)求新能源乘用车的销量





(2)请将上述


(3)若以这30名购车车主中购置新能源乘用车的车主性别比例作为该地区购置新能源乘用车的车主性别比例,从该地区购置新能源乘用车的车主中随机选取50人,记选到女性车主的人数为


参考公式:








某农科所对冬季昼夜温差(最高温度与最低温度的差)大小与某反季节大豆新品种一天内发芽数之间的关系进行了分析研究,他们分别记录了12月1日至12月6日每天昼夜最高、最低的温度(如图甲),以及实验室每天每100颗种子中的发芽数情况(如图乙),得到如下资料:

最高温度
最低温度
甲

乙
(1)请画出发芽数y与温差x的散点图;
(2)若建立发芽数y与温差x之间的线性回归模型,请用相关系数说明建立模型的合理性;
(3)①求出发芽数y与温差x之间的回归方程
(系数精确到0.01);
②若12月7日的昼夜温差为
,通过建立的y关于x的回归方程,估计该实验室12月7日当天100颗种子的发芽数.



甲


乙
(1)请画出发芽数y与温差x的散点图;
(2)若建立发芽数y与温差x之间的线性回归模型,请用相关系数说明建立模型的合理性;
(3)①求出发芽数y与温差x之间的回归方程

②若12月7日的昼夜温差为

参考数据:.
参考公式:
相关系数:(当
时,具有较强的相关关系).
回归方程中斜率和截距计算公式:
.
从某居民区随机抽取
个家庭,获得第
个家庭的月收入
(单位:千元)与月储蓄
(单位:千元)
的数据资料,算得
,
i,
,
.
(1)求家庭的月储蓄
对月收入
的线性回归方程
;
(2)判断变量
与
之间是正相关还是负相关;
(3)若该居民区某家庭月收入为
千元,预测该家庭的月储蓄.
附:




的数据资料,算得




(1)求家庭的月储蓄



(2)判断变量


(3)若该居民区某家庭月收入为

附:

“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展.下表是近几年我国某地区新能源乘用车的年销售量与年份的统计表:
某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:
(1)求新能源乘用车的销量
关于年份
的线性相关系数
,并判断
与
是否线性相关;
(2)请将上述
列联表补充完整,并判断是否有
的把握认为购车车主是否购置新能源乘用车与性别有关;
(3)若以这30名购车车主中购置新能源乘用车的车主性别比例作为该地区购置新能源乘用车的车主性别比例,从该地区购置新能源乘用车的车主中随机选取50人,记选到女性车主的人数为X,求X的数学期望与方差.
参考公式:
,
,其中
.
,若
,则可判断
与
线性相关.
附表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
销量(万台) | 8 | 10 | 13 | 25 | 24 |
某机构调查了该地区30位购车车主的性别与购车种类情况,得到的部分数据如下表所示:
| 购置传统燃油车 | 购置新能源车 | 总计 |
男性车主 | | 6 | 24 |
女性车主 | 2 | | |
总计 | | | 30 |
(1)求新能源乘用车的销量





(2)请将上述


(3)若以这30名购车车主中购置新能源乘用车的车主性别比例作为该地区购置新能源乘用车的车主性别比例,从该地区购置新能源乘用车的车主中随机选取50人,记选到女性车主的人数为X,求X的数学期望与方差.
参考公式:







附表:
![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
观察下列关于两个变量
和
的三个散点图,它们从左到右的对应关系依次为()




A.正相关、负相关、不相关 | B.负相关、不相关、正相关 |
C.负相关、正相关、不相关 | D.正相关、不相关、负相关 |