- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- 用样本估计总体
- + 变量间的相关关系
- 相关关系
- 散点图
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个车间为了规定工作原理,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:
由表中数据,求得线性回归方程
,根据回归方程,预测加工70个零件所花费的时间为___分钟.
零件数x(个) | 10 | 20 | 30 | 40 | 50 |
加工时间y(分钟) | 64 | 69 | 75 | 82 | 90 |
由表中数据,求得线性回归方程

某地随着经济的发展,居民收入逐年增长,如表是该地一建设银行连续五年的储蓄存款(年底余额),如表1

为了研究计算方便,工作人员将上表的数据进行了处理,令
,
得到表2:

(1)求:
关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于
的回归方程;
(3)用所求回归方程预测到2019年年底,该地储蓄存款额可达多少?
附:对于线性回归方程
,其中
,
.

为了研究计算方便,工作人员将上表的数据进行了处理,令



(1)求:

(2)通过(1)中的方程,求出y关于

(3)用所求回归方程预测到2019年年底,该地储蓄存款额可达多少?
附:对于线性回归方程



某同学根据一组x,y的样本数据,求出线性回归方程
和相关系数r,下列说法正确的是( )

A.y与x是函数关系 | B.![]() |
C.r只能大于0 | D.|r|越接近1,两个变量相关关系越弱 |
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表所示:
可能用到的计算结果:
,
,
.
线性回归方程
中
(1)求出y关于x的线性回归方程
;
(2)试预测加工10个零件需要多少时间?
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(h) | 2.5 | 3 | 4 | 4.5 |
可能用到的计算结果:



线性回归方程


(1)求出y关于x的线性回归方程

(2)试预测加工10个零件需要多少时间?
《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.
(1)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下列联表:能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?
(2)下图是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为的折线图:

请结合图形和所给数据求违章驾驶员人数y与月份x之间的回归直线方程
,并预测该路口7月份的不“礼让斑马线”违章驾驶员人数.
附注:参考数据:
,
.
参考公式:
,
,
(其中
)
(1)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下列联表:能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?
| 不礼让斑马线 | 礼让斑马线 | 合计 |
驾龄不超过1年 | 22 | 8 | 30 |
驾龄1年以上 | 8 | 12 | 20 |
合计 | 30 | 20 | 50 |
(2)下图是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为的折线图:

请结合图形和所给数据求违章驾驶员人数y与月份x之间的回归直线方程

附注:参考数据:


参考公式:




![]() | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |