- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 计算几个数据的极差、方差、标准差
- 根据方差、标准差求参数
- 各数据同时加减同一数对方差的影响
- 各数据同时乘除同一数对方差的影响
- 用方差、标准差说明数据的波动程度
- 估计总体的方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
每个国家身高正常的标准是不一样的,不同年龄、不同种族、不同地区身高都是有差异的,我们国家会定期进行0~18岁孩子身高体重全国性调查,然后根据这个调查结果制定出相应的各个年龄段的身高标准.一般测量出一个孩子的身高,对照一下身高体重表,如果在平均值标准差以内的就说明你的孩子身高是正常的,否则说明你的孩子可能身高偏矮或偏高了.根据科学研究0~18岁的孩子的身高服从正态分布
.在某城市随机抽取100名18岁男大学生得到其身高(
)的数据.
(1)记
表示随机抽取的100名18岁男大学生身高的数据在
之内的人数,求
及
的数学期望.
(2)若18岁男大学生身高的数据在
之内,则说明孩子的身高是正常的.
(i)请用统计学的知识分析该市18岁男大学生身高的情况;
(ii)下面是抽取的100名18岁男大学生中20名大学生身高(
)的数据:
经计算得
,
,其中
为抽取的第
个学生的身高,
.用样本平均数
作为
的估计值,用样本标准差
作为
的估计,剔除
之外的数据,用剩下的数据估计
和
的值.(精确到0.01)
附:若随机变量
服从正态分布
,则
,
.


(1)记




(2)若18岁男大学生身高的数据在

(i)请用统计学的知识分析该市18岁男大学生身高的情况;
(ii)下面是抽取的100名18岁男大学生中20名大学生身高(

1.65 | 1.62 | 1.74 | 1.82 | 1.68 | 1.72 | 1.75 | 1.66 | 1.73 | 1.67 |
1.86 | 1.81 | 1.74 | 1.69 | 1.76 | 1.77 | 1.69 | 1.78 | 1.63 | 1.68 |
经计算得












附:若随机变量




甲、乙两人在一次射击比赛中各射靶5次,两人成绩的统计表如下表所示,则有以下四种说法:
甲
乙
①甲成绩的平均数小于乙成绩的平均数; ②甲成绩的中位数等于乙成绩的中位数;
③甲成绩的方差小于乙成绩的方差; ④甲成绩的极差小于乙成绩的极差.
其中正确命题的个数是( )(注:
,其中
为数据
的平均数)
甲
环数 | 4 | 5 | 6 | 7 | 8 |
频数 | 1 | 1 | 1 | 1 | 1 |
乙
环数 | 5 | 6 | 9 |
频数 | 3 | 1 | 1 |
①甲成绩的平均数小于乙成绩的平均数; ②甲成绩的中位数等于乙成绩的中位数;
③甲成绩的方差小于乙成绩的方差; ④甲成绩的极差小于乙成绩的极差.
其中正确命题的个数是( )(注:



A.1 | B.2 | C.3 | D.4 |
某市准备引进优秀企业进行城市建设. 城市分别对甲地、乙地5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.根据茎叶图,可知甲地、乙地企业评估得分的平均值分别是_______、______;试比较甲地、乙地企业得分方差大小__________. 

若某同学连续三次考试的名次(第一名为1,第二名为2,以此类推且没有并列名次情况)不超过3,则称该同学为班级的尖子生.根据甲、乙、丙、丁四位同学过去连续3次考试名次数据,推断一定不是尖子生的是()
A.甲同学:均值为2,中位数为2 | B.乙同学:均值为2,方差小于1 |
C.丙同学:中位数为2,众数为2 | D.丁同学:众数为2,方差大于1 |
如表是某位同学连续5次周考的历史、政治的成绩,结果如下:
参考公式:
,
,
表示样本均值.
(1)求该生5次月考历史成绩的平均分和政治成绩的方差;
(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关关系,根据上表提供的数据,求两个变量
的线性回归方程.
周次 | 1 | 2 | 3 | 4 | 5 |
历史(x分) | 79 | 81 | 83 | 85 | 87 |
政治(y分) | 77 | 79 | 79 | 82 | 83 |
参考公式:



(1)求该生5次月考历史成绩的平均分和政治成绩的方差;
(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关关系,根据上表提供的数据,求两个变量

某工厂有甲、乙两条流水线同时生产直径为
的零件,各抽取10件进行测量,其结果如下图所示,则以下结论不正确的是( )



A.甲流水线生产的零件直径的极差为![]() |
B.乙流水线生产的零件直径的中位数为![]() |
C.乙流水线生产的零件直径比甲流水线生产的零件直径稳定 |
D.甲流水线生产的零件直径的平均值小于乙流水线生产的零件直径的平均值 |
垃圾分一分,城市美十分;垃圾分类,人人有责.某市为进一步推进生活垃圾分类工作,调动全民参与的积极性,举办了“垃圾分类游戏挑战赛”.据统计,在为期
个月的活动中,共有
万人次参与.为鼓励市民积极参与活动,市文明办随机抽取
名参与该活动的网友,以他们单次游戏得分作为样本进行分析,由此得到如下频数分布表:
(1)根据数据,估计参与活动的网友单次游戏得分的平均值及标准差(同一组中的数据用该组区间的中点值作代表);(其中标准差的计算结果要求精确到
)
(2)若要从单次游戏得分在
、
、
的三组参与者中,用分层抽样的方法选取
人进行电话回访,再从这
人中任选
人赠送话费,求此
人单次游戏得分不在同一组内的概率.
附:
,
.



单次游戏得分 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)根据数据,估计参与活动的网友单次游戏得分的平均值及标准差(同一组中的数据用该组区间的中点值作代表);(其中标准差的计算结果要求精确到

(2)若要从单次游戏得分在







附:


如图是某体育比赛现场上评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别是( )


A.5和1.6 | B.85和1.6 | C.85和0.4 | D.5和0.4 |