- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- + 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图是
,
两组各
名同学体重(单位:千克)数据的茎叶图.设
,
两组数据的平均数依次为
和
,标准差依次为
和
,那么( ).(注:标准差
,其中
为
,
,
,
的平均数)

















A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
某车间将
名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的茎叶图如图,已知两组技工在单位时间内加工的合格零件的平均数都为
.

(1)求
,
的值;
(2)求甲、乙两组技工在单位时间内加工的合格零件的方差
和
,并由此分析两组技工的加工水平;
(3)质检部门从该车间甲、乙两组技工中各随机抽取一名,对其加工的零件进行检测,若两人加工的合格零件个数之和大于
,则称该车间“质量合格”,求该车间“质量合格”的概率.
附:方差
,其中
为数据
的平均数



(1)求


(2)求甲、乙两组技工在单位时间内加工的合格零件的方差


(3)质检部门从该车间甲、乙两组技工中各随机抽取一名,对其加工的零件进行检测,若两人加工的合格零件个数之和大于

附:方差



甲、乙两人各参加了5次测试,将他们在各次测试中的得分绘制成如图所示的茎叶图.已知甲、乙二人得分的平均数相同,则
_______;
_____
.(填
)





如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________.

(注:方差
,其中
为
的平均数)

(注:方差



以下茎叶图记录了甲、乙两组各四名工人
天加工的零件数,则甲组工人
天每人加工零件的平均数为____________;若分别从甲、乙两组中随机选取一名工人,则这两名工人加工零件的总数超过了
的概率为________




某厂分别用甲、乙两种工艺生产同一种零件,尺寸在[223,228]内(单位:mm)的零件为一等品,其余为二等品.在两种工艺生产的零件中,各随机抽取10个,其尺寸的茎叶图如图所示:

(1)分别计算抽取的两种工艺生产的零件尺寸的平均数;
(2)已知甲工艺每天可生产300个零件,乙工艺每天可生产280个零件,一等品利润为30元/个,二等品利润为20元/个.视频率为概率,试根据抽样数据判断采用哪种工艺生产该零件每天获得的利润更高?

(1)分别计算抽取的两种工艺生产的零件尺寸的平均数;
(2)已知甲工艺每天可生产300个零件,乙工艺每天可生产280个零件,一等品利润为30元/个,二等品利润为20元/个.视频率为概率,试根据抽样数据判断采用哪种工艺生产该零件每天获得的利润更高?
从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为
中位数分别为
则( )




A.x甲<x乙,m甲>m乙 | B.x甲>x乙,m甲>m乙 |
C.x甲>x乙,m甲<m乙 | D.x甲<x乙,m甲<m乙 |
如下所示,茎叶图记录了甲,乙两组各五名学生在一次英语听力测试中的成绩(单位:分)
已知甲组数据的平均数为17,乙组数据的中位数为17,则
,
的值分别为( )

已知甲组数据的平均数为17,乙组数据的中位数为17,则



A.3,6 | B.3,7 | C.2,6 | D.2,7 |