- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产得灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下:

(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;
(Ⅱ)在北方工厂使用寿命不低于600小时的样本灯具中随机抽取两个灯具,求至少有一个灯泡使用寿命不低于700小时的概率.

(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;
(Ⅱ)在北方工厂使用寿命不低于600小时的样本灯具中随机抽取两个灯具,求至少有一个灯泡使用寿命不低于700小时的概率.
为检查某工厂所生产的8万台电风扇的质量,随机抽取20台,其无故障连续使用时限(单位:h)统计如下:
(1)作出频率分布直方图;
(2)估计8万台电风扇中无故障连续使用时限不低于280h的有多少台;
(3)假设同一组中的数据用该组区间的中点值代替,估计这8万台电风扇的平均无故障连续使用时限.
分组 | 频数 | 频率 | 频率/组距 |
![]() | 1 | 0.05 | 0.0025 |
![]() | 1 | 0.05 | 0.0025 |
![]() | 2 | 0.10 | 0.0050 |
![]() | 3 | 0.15 | 0.0075 |
![]() | 4 | 0.20 | 0.0100 |
![]() | 6 | 0.30 | 0.0150 |
![]() | 2 | 0.10 | 0.0050 |
![]() | 1 | 0.05 | 0.0025 |
合计 | 20 | 1 | 0.050 |
(1)作出频率分布直方图;
(2)估计8万台电风扇中无故障连续使用时限不低于280h的有多少台;
(3)假设同一组中的数据用该组区间的中点值代替,估计这8万台电风扇的平均无故障连续使用时限.
某同学假期社会实践活动选定的课题是“节约用水研究”.为此他购买了电子节水阀,并记录了家庭未使用电子节水阀20天的日用水量数据(单位:
)和使用了电子节水阀20天的日用水量数据,并利用所学的《统计学》知识得到了未使用电子节水阀20天的日平均用水量为0.48
,使用了电子节水阀20天的日用水量数据的频率分布直方图如下图:

(1)试估计该家庭使用电子节水阀后,日用水量小于0.35
的概率;
(2)估计该家庭使用电子节水阀后,一年能节省多少
水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)



(1)试估计该家庭使用电子节水阀后,日用水量小于0.35

(2)估计该家庭使用电子节水阀后,一年能节省多少

随着银行业的不断发展,市场竞争越来越激烈,顾客对银行服务质量的要求越来越高,银行为了提高柜员员工的服务意识,加强评价管理,工作中让顾客对服务作出评价,评价分为满意、基本满意、不满意三种.某银行为了比较顾客对男女柜员员工满意度评价的差异,在下属的四个分行中随机抽出40人(男女各半)进行分析比较.对40人一月中的顾客评价“不满意”的次数进行了统计,按男、女分为两组,再将每组柜员员工的月“不满意”次数分为5组:
,
,
,
,
,得到如下频数分布表.
(1)在答题卡所给的坐标系中分别画出男、女柜员员工的频率分布直方图;分别求出男、女柜员员工的月平均“不满意”次数的估计值,试根据估计值比较男、女柜员员工的满意度谁高?
(2)在抽取的40名柜员员工中:从“不满意”次数不少于20的员工中随机抽取3人,并用X表示随机抽取的3人中女柜员工的人数,求X的分布列和数学期望.





分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
女柜员 | 2 | 3 | 8 | 5 | 2 |
男柜员 | 1 | 3 | 9 | 4 | 3 |
(1)在答题卡所给的坐标系中分别画出男、女柜员员工的频率分布直方图;分别求出男、女柜员员工的月平均“不满意”次数的估计值,试根据估计值比较男、女柜员员工的满意度谁高?
(2)在抽取的40名柜员员工中:从“不满意”次数不少于20的员工中随机抽取3人,并用X表示随机抽取的3人中女柜员工的人数,求X的分布列和数学期望.
某高中为了选拔学生参加“全国高中数学联赛”,先在本校进行初赛(满分150分),随机抽取100名学生的成绩作为样本,并根据他们的初赛成绩得到如图所示的频率分布直方图.

(1)求频率分布直方图中a的值;
(2)根据频率分布直方图,估计这次初赛成绩的平均数、中位数、众数.

(1)求频率分布直方图中a的值;
(2)根据频率分布直方图,估计这次初赛成绩的平均数、中位数、众数.
《复仇者联盟4:终局之战》是安东尼·罗素和乔·罗素执导的美国科幻电影,改编自美国漫威漫画,自2019年4月24日上映以来票房火爆.某电影院为了解在该影院观看《复仇者联盟4》的观众的年龄构成情况,随机抽取了100名观众的年龄,并分成
,
,
,
,
,
,
七组,得到如图所示的频率分布直方图.

(1)求这100名观众年龄的平均数(同一组数据用该区间的中点值作代表)、中位数;
(2)该电影院拟采用抽奖活动来增加趣味性,观众可以选择是否参与抽奖活动(不参与抽奖活动按原价购票),活动方案如下:每张电影票价格提高10元,同时购买这样电影票的每位观众可获得3次抽奖机会,中奖1次则奖励现金
元,中奖2次则奖励现金
元,中奖三次则奖励现金
元,其中
且
,已知观众每次中奖的概率均为
.
①以某观众三次抽奖所获得的奖金总额的数学期望为评判依据,若要使抽奖方案对电影院有利,则
最高可定为多少;
②据某时段内的统计,当
时该电影院有600名观众选择参加抽奖活动,并且
每增加1元,则参加抽奖活动的观众增加100人.设该时间段内观影的总人数不变,抽奖活动给电影院带来的利润的期望为
,求
的最大值.








(1)求这100名观众年龄的平均数(同一组数据用该区间的中点值作代表)、中位数;
(2)该电影院拟采用抽奖活动来增加趣味性,观众可以选择是否参与抽奖活动(不参与抽奖活动按原价购票),活动方案如下:每张电影票价格提高10元,同时购买这样电影票的每位观众可获得3次抽奖机会,中奖1次则奖励现金






①以某观众三次抽奖所获得的奖金总额的数学期望为评判依据,若要使抽奖方案对电影院有利,则

②据某时段内的统计,当




某机构为了解某市民用电情况,抽查了该市100户居民月均用电量(单位:kw.h),以
分组的频率分布直方图如图所示.

(1)求样本中月均用电量为
的用户数量;
(2)估计月均用电量的中位数;
(3)在月均用电量为
的四组用户中,用分层抽样的方法抽取22户居民,则月均用电量为
的用户中应该抽取多少户?


(1)求样本中月均用电量为

(2)估计月均用电量的中位数;
(3)在月均用电量为


随着社会发展,淮北市在一天的上下班时段也出现了堵车严重的现象。交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3 ),从淮北市交通指挥中心随机选取了一至四马路之间50个交通路段,依据交通指数数据绘制的直方图如图所示:

(I)据此直方图估算交通指数T∈[4,8)时的中位数和平均数;
(II)据此直方图求出早高峰一至四马路之间的3个路段至少有2个严重拥堵的概率是多少?
(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟,中度拥堵为45分钟,严重拥堵为60分钟,求此人用时间的数学期望.

(I)据此直方图估算交通指数T∈[4,8)时的中位数和平均数;
(II)据此直方图求出早高峰一至四马路之间的3个路段至少有2个严重拥堵的概率是多少?
(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟,中度拥堵为45分钟,严重拥堵为60分钟,求此人用时间的数学期望.
某校高三学生有两部分组成,应届生与复读生共2000学生,期末考试数学成绩换算为100分的成绩如图所示,从高三的学生中,利用分层抽样,抽取100名学生的成绩绘制成频率分布直方图:

(1)若抽取的学生中,应届生与复读生的比为9﹕1,确定高三应届生与复读生的人数;
(2)计算此次数学成绩的平均分;
(3)若抽取的
,
的学生中,应届生与复读生的比例关系也是9﹕1,从抽取的
,
两段的复读生中,选两人进行座谈,设抽取的
的人数为随机变量
,求
的分布列与期望值。

(1)若抽取的学生中,应届生与复读生的比为9﹕1,确定高三应届生与复读生的人数;
(2)计算此次数学成绩的平均分;
(3)若抽取的







从某企业生产的某种产品中随机抽取
件,测量这些产品的一项质量指标值,其频率分布表如下:
则可估计这种产品质量指标值的方差为( )

质量指标值分组 | ![]() | ![]() | ![]() |
频率 | ![]() | ![]() | ![]() |
则可估计这种产品质量指标值的方差为( )
A.![]() | B.![]() | C.![]() | D.![]() |