某单位共有职工1000人,其中男性700人,女性300人,为调查该单位职工每周平均体育运动时间的情况,采用分层抽样的方法,收集200位职工每周平均体育运动时间的样本数据(单位:小时).

(1)根据这200个样本数据,得到职工每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:.估计该单位职工每周平均体育运动时间超过4小时的概率;
(2)估计该单位职工每周平均体育运动时间的平均数和中位数(保留两位小数);
(3)在样本数据中,有40位女职工的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有90%的把握认为“该单位职工的每周平均体育运动时间与性别有关”,

0.10
0.05
0.010
0.005

2.706
3.841
6.635
7.879
 
附:.
当前题号:1 | 题型:解答题 | 难度:0.99
某工厂有甲,乙两个车间生产同一种产品,甲车间有工人人,乙车间有工人人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,甲车间抽取的工人记作第一组,乙车间抽取的工人记作第二组,并对他们中每位工人生产完成的一件产品的事件(单位:)进行统计,按照进行分组,得到下列统计图.

分别估算两个车间工人中,生产一件产品时间少于的人数;
分别估计两个车间工人生产一件产品时间的平均值,并推测车哪个车间工人的生产效率更高?
从第一组生产时间少于的工人中随机抽取人,求抽取人中,至少人生产时间少于的概率.
当前题号:2 | 题型:解答题 | 难度:0.99
从我校高二年级学生中抽取40名学生,将他们高中学业水平考试的数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,…,后得到如下图的频率分布直方图,观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;
(2)若我校高二年级有1080人,试估计高二年级这次学业水平考试的数学成绩不低于60分的人数;
(3)从频率分布直方图估计成绩的中位数和平均数。
当前题号:3 | 题型:解答题 | 难度:0.99
某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100],则该次英语测试该班的平均成绩是(  )
A.63B.65C.68D.70
当前题号:4 | 题型:单选题 | 难度:0.99
某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[55,65),[65,75),[75,85),[85,95]分组).
分组
频数
[55,65)
2
[65,75)
4
[75,85)
10
[85,95]
4
合计
20
 
第一车间样本频数分布表
(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;
(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)
(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.
当前题号:5 | 题型:解答题 | 难度:0.99
某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在之间,将测量结果按如下方式分成六组:第1组,第2组,…,第6组,如图是按上述分组得到的频率分布直方图,以频率近似概率.

(1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;
(2)试估计该校高一年级全体男生身高的平均数(同一组中的数据用该组区间的中点值代表)与中位数;
(3)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.
当前题号:6 | 题型:解答题 | 难度:0.99
某教师将寒假期间该校所有学生阅读小说的时间统计如下图所示,并统计了部分学生阅读小说的类型,得到的数据如下表所示:

 
男生
女生
阅读武侠小说
80
30
阅读都市小说
20
70
 
(1)是否有99.9%的把握认为“性别”与“阅读小说的类型”有关?
(2)求学生阅读小说时间的众数和平均数(同一组数据用该组区间的中点值作代表);
(3)若按照分层抽样的方法从阅读时间在的学生中随机抽取6人,再从这6人中随机挑选2人介绍选取小说类型的缘由,求所挑选的2人阅读时间都在的概率.
附:.

0.025
0.010
0.005
0.001

5.024
6.635
7.879
10.828
 
当前题号:7 | 题型:解答题 | 难度:0.99
某小学为了解四年级学生的家庭作业用时情况,从本校四年级随机抽取了一批学生进行调查,并绘制了学生作业用时的频率分布直方图,如图所示.

(1)估算这批学生的作业平均用时情况;
(2)作业用时不能完全反映学生学业负担情况,这与学生自身的学习习惯有很大关系如果用时四十分钟之内评价为优异,一个小时以上为一般,其它评价为良好.现从优异和良好的学生里面用分层抽样的方法抽取300人,其中女生有90人(优异20人).请完成列联表,并根据列联表分析能否在犯错误的概率不超过0.05的前提下认为学习习惯与性别有关系?
 
男生
女生
合计
良好
 
 
 
优异
 
 
 
合计
 
 
 
 
附:,其中

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 
当前题号:8 | 题型:解答题 | 难度:0.99
某企业有两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从两厂中各随机抽取100件产品统计其质量指标值,得到如下频率分布直方图:

(1)填写列联表,并根据列联表判断有多大的把握认为这两个分厂的产品质量有差异?
 
优质品
非优质品
合计

 
 
 

 
 
 
合计
 
 
 
 
(2)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;
(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.
附:.
 
0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
 
当前题号:9 | 题型:解答题 | 难度:0.99
某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[55,65),[65,75),[75,85),[85,95]分组).
分组
频数
[55,65)
2
[65,75)
4
[75,85)
10
[85,95]
4
合计
20
 
第一车间样本频数分布表

(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;
(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)
(Ⅲ)从第一车间被统计的生产时间小于75min的工人中随机抽取2人,求抽取的2人中,至少1人生产时间小于65min的概率.
当前题号:10 | 题型:解答题 | 难度:0.99