- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
蚂蚁森林是支付宝客户端为首期“碳账户”设计的一款公益行动:用户通过步行、地铁出行、在线缴纳水电煤气费、网络挂号、网络购票等行为就会减少相应的碳排放量,可以用来在支付宝里养一棵虚拟的树.这棵树长大后,公益组织、环保企业等蚂蚁生态伙伴们可以在现实沙漠化地区(阿拉善、通辽、库布齐等)种下一棵实体的树目前通辽地区对部分基地樟子松幼苗的培育技术进行了改进,为了了解改进后的效果,现从改进前后的树苗培育基地各抽取了
株产品作为样本,检测其同样生长周期的高度(单位:
),若高度不低于
才适合移植,否则继续等待生长图1是改进前的样本的频率分布直方图,表2是改进后的样本频率分布表.
图1

表2技术改进后样本的频率分布表
(1)根据图1和表2提供的信息,试从移植率的角度对培育技术改进前后的优劣进行比较;
(2)估计培育技术未改进的基地树苗高度的平均数;
(3)在市场中,规定高度在
内的为三等苗,
内的为二等苗,
内的为一等苗.现从表2高度不低于
的树苗样本中采用分层抽样的方法抽取
株,再从这
株幼苗中随机抽取
株,求这
株中一、二、三等苗都有的概率.



图1

表2技术改进后样本的频率分布表
高度 | 频数 |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
(1)根据图1和表2提供的信息,试从移植率的角度对培育技术改进前后的优劣进行比较;
(2)估计培育技术未改进的基地树苗高度的平均数;
(3)在市场中,规定高度在








某商场在国庆促销活动中,对某天9时至19时的促销额进行统计,其频率分布直方图如图所示,已知15时至17时的销售额为8万元,则当天13时前的销售额为______万元;

某健身馆在2019年7、8两月推出优惠项目吸引了一批客户.为预估2020年7、8两月客户投入的健身消费金额,健身馆随机抽样统计了2019年7、8两月100名客户的消费金额,分组如下:
,
,
,…,
(单位:元),得到如图所示的频率分布直方图:

(1)请用抽样的数据预估2020年7、8两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);
(2)若把2019年7、8两月健身消费金额不低于800元的客户,称为“健身达人”,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有
的把握认为“健身达人”与性别有关?
(3)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.
方案一:每满800元可立减100元;
方案二:金额超过800元可抽奖三次,每次中奖的概率为
,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.
若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
附:






(1)请用抽样的数据预估2020年7、8两月健身客户人均消费的金额(同一组中的数据用该组区间的中点值作代表);
(2)若把2019年7、8两月健身消费金额不低于800元的客户,称为“健身达人”,经数据处理,现在列联表中得到一定的相关数据,请补全空格处的数据,并根据列联表判断是否有

| 健身达人 | 非健身达人 | 总计 |
男 | 10 | | |
女 | | 30 | |
总计 | | | |
(3)为吸引顾客,在健身项目之外,该健身馆特别推出健身配套营养品的销售,现有两种促销方案.
方案一:每满800元可立减100元;
方案二:金额超过800元可抽奖三次,每次中奖的概率为

若某人打算购买1000元的营养品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
附:
![]() | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
![]() | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 |

经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间
内(单位:克),统计质量的数据作出其频率分布直方图如图所示:

(1)按分层抽样的方法从质量落在
,
的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:
请你通过计算为该村选择收益最好的方案.
(参考数据:
)


(1)按分层抽样的方法从质量落在


(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:
A.所有黄桃均以20元/千克收购; |
B.低于350克的黄桃以5元/个收购,高于或等于350克的以9元/个收购. |
(参考数据:

某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中
的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;
(3)若这100名学生语文成绩某些分数段的人数(
)与数学成绩相应分数段的人数(
)之比如下表所示,求数学成绩在[50,90)之外的人数.

(1)求图中

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;
(3)若这100名学生语文成绩某些分数段的人数(


分数段 | [50,60) | [60,70) | [70,80) | [80,90) |
![]() | 1:1 | 2:1 | 3:4 | 4:5 |

上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布
,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组
,第二组
,…,第六组
,得到如图所示的频率分布直方图:

(1)试由样本频率分布直方图估计该校数学成绩的平均分数;
(2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为
,求
的概率.
附:若
,则
,
,
.





(1)试由样本频率分布直方图估计该校数学成绩的平均分数;
(2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为


附:若




在某市高中某学科竞赛中,某一个区
名考生的参赛成绩统计如图所示.

(1)求这
名考生的竞赛平均成绩
(同一组中数据用该组区间中点作代表);
(2)由直方图可认为考生竞赛成绩
服正态分布
,其中
,
分别取考生的平均成绩
和考生成绩的方差
,那么该区
名考生成绩超过
分(含
分)的人数估计有多少人?
(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取
名考生,记成绩不超过
分的考生人数为
,求
.(精确到
)
附:①
,
;②
,则
,
;③
.


(1)求这


(2)由直方图可认为考生竞赛成绩









(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取





附:①






某快递公司收取快递费用的标准是:重量不超过
的包裹收费10元;重量超过
的包裹,除
收费10元之外,超过
的部分,每超出
(不足
,按
计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如表:
公司对近60天,每天揽件数量统计如表:
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来3天内恰有2天揽件数在101~400之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?







包裹重量(单位:kg) | 1 | 2 | 3 | 4 | 5 |
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司对近60天,每天揽件数量统计如表:
包裹件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件数(近似处理) | 50 | 150 | 250 | 350 | 450 |
天数 | 6 | 6 | 30 | 12 | 6 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来3天内恰有2天揽件数在101~400之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?
某电视台举行文艺比赛,并通过网络对比赛进行直播.比赛现场有5名专家评委给每位参赛选手评分,场外观众可以通过网络给每位参赛选手评分.每位选手的最终得分由专家评分和观众评分确定.某选手参与比赛后,现场专家评分情况如表;场外有数万名观众参与评分,将评分按照[7,8),[8,9),[9,10]分组,绘成频率分布直方图如图:

(1)求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;
(2)从5名专家中随机选取3人,X表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y表示评分不小于9分的人数;试求E(X)与E(Y)的值;
(3)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数
作为该选手的最终得分,方案二:分别计算专家评分的平均数
和观众评分的平均数
,用
作为该选手最终得分.请直接写出
与
的大小关系.
专家 | A | B | C | D | E |
评分 | 9.6 | 9.5 | 9.6 | 8.9 | 9.7 |

(1)求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;
(2)从5名专家中随机选取3人,X表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y表示评分不小于9分的人数;试求E(X)与E(Y)的值;
(3)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数






某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组
,第二组
……,第五组
,如图是按上述分组方法得到的频率分布直方图.

(1)请估计学校1800名学生中,成绩属于第四组的人数;
(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;
(3)请根据频率分布直方图,求样本数据的众数、平均数.




(1)请估计学校1800名学生中,成绩属于第四组的人数;
(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;
(3)请根据频率分布直方图,求样本数据的众数、平均数.