- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.

(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.
某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段
,
,……,
后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求出物理成绩低于50分的学生人数;
(2)估计这次考试物理学科及格率(60分以上为及格);
(3)从物理成绩不及格的学生中选x人,其中恰有一位成绩不低于50分的概率为
,求此时x的值;




(1)求出物理成绩低于50分的学生人数;
(2)估计这次考试物理学科及格率(60分以上为及格);
(3)从物理成绩不及格的学生中选x人,其中恰有一位成绩不低于50分的概率为

(本小题满分12分)
“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高).现从参赛者中抽取了
人,按年龄分成5组,第一组:
,第二组:
,第三组:
,第四组:
,第五组:
,得到如图所示的频率分布直方图,已知第一组有6人.

(1)求
;
(2)求抽取的
人的年龄的中位数(结果保留整数);
(3)从该市大学生、军人、医务人员、工人、个体户 五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.
(Ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;
(Ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度.
“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高).现从参赛者中抽取了







(1)求

(2)求抽取的

(3)从该市大学生、军人、医务人员、工人、个体户 五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.
(Ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;
(Ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度.
为了考查某厂2000名工人的生产技能情况,随机抽查了该厂
名工人某天的产量(单位:件),整理后得到如下的频率分布直方图(产量的区间分别为:
),其中产量在
的工人有6名.
(1)求这一天产量不小于25的工人数;
(2)该厂规定从产量低于20件的工人中选取2名工人进行培训,求这两名工人不在同一分组的概率.



(1)求这一天产量不小于25的工人数;
(2)该厂规定从产量低于20件的工人中选取2名工人进行培训,求这两名工人不在同一分组的概率.

某班50名学生在一次百米测试中,成绩全部介于13 s与19 s之间,将测试结果分成如下六组:[13,14),[14,15),[15,16),[16,17),[17,18),[18,19].如图是按上述分组方法得到的频率分布直方图,设成绩小于17 s的学生人数占全班人数的百分比为x,成绩在[15,17)中的学生人数为y,则从频率分布直方图中可以分析出x和y分别为 ( )


A.90%,35 | B.90%,45 |
C.10%,35 | D.10%,45 |
某校从高二年级学生中随机抽取100名学生,将他们某次考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示),

(1)求分数在[70,80)中的人数;
(2)若用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5 人,该5 人中成绩在[40,50)的有几人?
(3)在(2)中抽取的5人中,随机选取2 人,求分数在[40,50)和[50,60)各1 人的概率.

(1)求分数在[70,80)中的人数;
(2)若用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5 人,该5 人中成绩在[40,50)的有几人?
(3)在(2)中抽取的5人中,随机选取2 人,求分数在[40,50)和[50,60)各1 人的概率.
脐橙营养丰富,含有人体所必需的各类营养成份,若规定单个脐橙重量(单位:千克)在[0.1,0.3)的脐橙是“普通果”,重量在[0.3,0.5)的磨橙是“精品果”,重量在[0.5,0.7]的脐橙是“特级果”,有一果农今年种植脐橙,大获丰收为了了解脐橙的品质,随机摘取100个脐橙进行检测,其重量分别在[0.1,0.2),[0.2,0.3),[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7]中,经统计得到如图所示频率分布直方图

(1)将频率视为概率,用样本估计总体.现有一名消费者从脐橙果园中,随机摘取5个脐橙,求恰有3个是“精品果”的概率.
(2)现从摘取的100个脐橙中,采用分层抽样的方式从重量为[0.4,0.5),[0.5,0.6)的脐橙中随机抽取10个,再从这10个抽取3个,记随机变量X表示重量在[0.5,0.6)内的脐橙个数,求X的分布列及数学期望.

(1)将频率视为概率,用样本估计总体.现有一名消费者从脐橙果园中,随机摘取5个脐橙,求恰有3个是“精品果”的概率.
(2)现从摘取的100个脐橙中,采用分层抽样的方式从重量为[0.4,0.5),[0.5,0.6)的脐橙中随机抽取10个,再从这10个抽取3个,记随机变量X表示重量在[0.5,0.6)内的脐橙个数,求X的分布列及数学期望.
交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为
,其范围为
,分为五个级别,
畅通;
基本畅通;
轻度拥堵;
中度拥堵;
严重拥堵.早高峰时段(
),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如图.

(1)这50个路段为中度拥堵的有多少个?
(2)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?
(3)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟,中度拥堵为42分钟,严重拥堵为60分钟,求此人所用时间的数学期望.









(1)这50个路段为中度拥堵的有多少个?
(2)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?
(3)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟,中度拥堵为42分钟,严重拥堵为60分钟,求此人所用时间的数学期望.
为了了解当下高二男生的身高状况,某地区对高二年级男生的身高(单位:
)进行了抽样调查,得到的频率分布直方图如图所示.已知身高在
之间的男生人数比身高在
之间的人数少1人.

(1)若身高在
以内的定义为身高正常,而该地区共有高二男生18000人,则该地区高二男生中身高正常的大约有多少人?
(2)从所抽取的样本中身高在
和
的男生中随机再选出2人调查其平时体育锻炼习惯对身高的影响,则所选出的2人中至少有一人身高大于185
的概率是多少?




(1)若身高在

(2)从所抽取的样本中身高在



某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在
,按照区间
,
,
,
,
进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.

完成表格,并判断是否有
以上的把握认为“数学成绩优秀与教学改革有关”;

(2)从乙班
,
,
分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自
发言的人数为随机变量
,求
的分布列和期望.







完成表格,并判断是否有


(2)从乙班





