- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某地区为了解小学生的身高发育情况,从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若
,由图中可知,身高落在
范围内的学生人数是( )




A.35 | B.24 |
C.46 | D.65 |
某高校在2017年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下:
(1)请先求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3,4,5组每组各应抽取多少名学生进入第二轮面试.
(3)根据直方图估计这次自主招生考试笔试成绩的平均数和中位数;
组号 | 分组 | 频率 |
第1组 | [160,165) | 0.05 |
第2组 | [165,170) | 0.35 |
第3组 | [170,175) | ① |
第4组 | [175,180) | 0.20 |
第5组 | [180,185] | 0.10 |
(1)请先求出频率分布表中①处应填写的数据,并完成如图所示的频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3,4,5组每组各应抽取多少名学生进入第二轮面试.
(3)根据直方图估计这次自主招生考试笔试成绩的平均数和中位数;

某校从高二年级学生中随机抽取60名学生,将期中考试的政治成绩(均为整数)分成六段:
后得到如下频率分布直方图.
(1)根据频率分布直方图,分别求
,众数,中位数.
(2)估计该校高二年级学生期中考试政治成绩的平均分.
(3)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则在
分数段抽取的人数是多少?

(1)根据频率分布直方图,分别求

(2)估计该校高二年级学生期中考试政治成绩的平均分.
(3)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则在


在某次数学测验后,将参加考试的
名学生的数学成绩制成频率分布直方图(如图),则在该次测验中成绩不低于
分的学生数是( )




A.![]() | B.![]() | C.![]() | D.![]() |
某
手机专卖店对某市市民进行
手机认可度的调查,在已购买
手机的1000名市民中,随机抽取100名,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:

(1)求频数分布表中
,
的值,并补全频率分布直方图;
(2)在抽取的这100名市民中,从年龄在
、
内的市民中用分层抽样的方法抽取5人参加
手机宣传活动,现从这5人中随机选取2人各赠送一部
手机,求这2人中恰有1人的年龄在
内的概率.



分组(岁) | 频数 |
![]() | 5 |
![]() | ![]() |
![]() | 35 |
![]() | ![]() |
![]() | 10 |
合计 | 100 |

(1)求频数分布表中


(2)在抽取的这100名市民中,从年龄在





某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了160盒该产品,以
(单位:盒,
)表示这个开学季内的市场需求量,
(单位:元)表示这个开学季内经销该产品的利润.
的众数和平均数;
(2)将
表示为
的函数;
(3)根据频率分布直方图估计利润
不少于4800元的概率.




(2)将


(3)根据频率分布直方图估计利润

某市为调查统计高中男生身高情况,现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于
和
之间,将测量结果按如下方式分成6组:第1组
,第2组
,…,第6组
,如图是按上述分组方法得到的频率分布直方图.

(1)由频率分布直方图估计该校高三年级男生平均身高状况;
(2)求这50名男生身高在
以上(含
)的人数.






(1)由频率分布直方图估计该校高三年级男生平均身高状况;
(2)求这50名男生身高在


某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.

(1)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;
(2)在抽取的学生中,从成绩为
的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率;
(3)记高一、高二两个年级知识竞赛的平均分分别为
,
,试估计
,
的大小关系.(只需写出结论)
成绩分组 | 频数 |
![]() | 2 |
![]() | 6 |
![]() | 16 |
![]() | 14 |
![]() | 2 |

(1)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;
(2)在抽取的学生中,从成绩为

(3)记高一、高二两个年级知识竞赛的平均分分别为




某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,
,
,
,
,
(单位:克)中,经统计得到的频率分布直方图如图所示.

(1)根据频率分布直方图估计这组数据的众数、中位数、平均数;
(2)若该种植园中还未摘下的芒果大约有10000个,以各组数据的中间数代表这组数据的平均值,用样本估计总体.来收购芒果的某经销商提出如下两种收购方案:
:所有芒果以10元/千克收购;
:对质量低于250克的芒果以2元/个收购,高于或等于250克的芒果以3元/个收购.通过计算确定种植园选择哪种方案获利更多?







(1)根据频率分布直方图估计这组数据的众数、中位数、平均数;
(2)若该种植园中还未摘下的芒果大约有10000个,以各组数据的中间数代表这组数据的平均值,用样本估计总体.来收购芒果的某经销商提出如下两种收购方案:


(理)某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在
内,发布成绩使用等级制各等级划分标准见下表,规定:
三级为合格等级,
为不合格等级.
为了解该校高一年级学生身体素质情况,从中抽取了
名学生的原始成绩作为样本进行统计,按照
的分组作出频率分布直方图如图所示,样本中分数在80分及以上的所有数据的茎叶图如图所示.,


(1)求
和频率分布直方图中的
的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生任选3人,求至少有1人成绩是合格等级的概率;
(3)在选取的样本中,从
两个等级的学生中随机抽取了3名学生进行调研,记
表示所抽取的
名学生中为
等级的学生人数,求随机变量
的分布列及数学期望.



百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等级 | ![]() | ![]() | ![]() | ![]() |
为了解该校高一年级学生身体素质情况,从中抽取了




(1)求


(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生任选3人,求至少有1人成绩是合格等级的概率;
(3)在选取的样本中,从




