- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某中学为了解高一学生的视力健康状况,在高一年级体检活动中采用统一的标准对数视力表,按照《中国学生体质健康监测工作手册》的方法对1039名学生进行了视力检测,判断标准为:双眼裸眼视力
为视力正常,
为视力低下,其中
为轻度,
为中度,
为重度.统计检测结果后得到如图所示的柱状图.

(1)求该校高一年级轻度近视患病率;
(2)根据保护视力的需要,需通知检查结果为“重度近视”学生的家长带孩子去医院眼科进一步检查和确诊,并开展相应的矫治,则该校高一年级需通知的家长人数约为多少人?
(3)若某班级6名学生中有2人为视力正常,则从这6名学生中任选2人,恰有1人视力正常的概率是多少?






(1)求该校高一年级轻度近视患病率;
(2)根据保护视力的需要,需通知检查结果为“重度近视”学生的家长带孩子去医院眼科进一步检查和确诊,并开展相应的矫治,则该校高一年级需通知的家长人数约为多少人?
(3)若某班级6名学生中有2人为视力正常,则从这6名学生中任选2人,恰有1人视力正常的概率是多少?
某学校为了调查学生在一周生活方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在
元的学生有60人,则下列说法正确的是______.


A.样本中支出在![]() ![]() |
B.样本中支出不少于40元的人数有132 |
C.n的值为200 |
D.若该校有2000名学生,则定有600人支出在![]() |

2016年1月6日北京时间上午11时30分,朝鲜中央电视台宣布“成功进行了氢弹试验”,再次震动世界,此事件也引起了我国公民热议,其中丹东市(丹东市和朝鲜隔江)某
聊天群有300名网友,乌鲁木齐市某微信群有200名网友,为了解不同地区我国公民对“氢弹试验”事件的关注程度,现采用分层抽样的方法,从中抽取了100名网友,先分别统计了他们在某时段发表的信息条数,再将两地网友发表的信息条数分成5组:
,分别加以统计,得到如图所示的频率分布直方图.


(1)求丹东市网友的平均留言条数(保留整数);
(2)为了进一步开展调查,从样本中留言条数不足50条的网友中随机抽取2人,求至少抽到一名乌鲁木齐市网友的概率;
(3)规定“留言条数”不少于70条为“强烈关注”.
①请你根据已知条件完成下列
的列联表:
②判断是否有
的把握认为“强烈关注”与网友所在的地区有关?
附:临界值表及参考公式:
,其中




(1)求丹东市网友的平均留言条数(保留整数);
(2)为了进一步开展调查,从样本中留言条数不足50条的网友中随机抽取2人,求至少抽到一名乌鲁木齐市网友的概率;
(3)规定“留言条数”不少于70条为“强烈关注”.
①请你根据已知条件完成下列

| 强烈关注 | 非强烈关注 | 合计 |
丹东市 | | | |
乌鲁木齐市 | | | |
合计 | | | |
②判断是否有

附:临界值表及参考公式:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
为营造“平安春运,快乐新年”氛围,某重要路段限速
,现对通过该路段的
辆汽车的车速进行检测,统计并绘成频率分布直方图(如图),若速度在
之间的车辆为150辆,则这
辆汽车中车速高于限速的汽车有__________辆.





2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考——如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.
社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.

(Ⅰ)求得分在
上的频率;
(Ⅱ)求
社区居民问卷调查的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)
(Ⅲ)以频率估计概率,若在全部参与学习的居民中随机抽取5人参加问卷调查,记得分在
间的人数为
,求
的分布列.


(Ⅰ)求得分在

(Ⅱ)求

(Ⅲ)以频率估计概率,若在全部参与学习的居民中随机抽取5人参加问卷调查,记得分在



市面上有某品牌
型和
型两种节能灯,假定
型节能灯使用寿命都超过5000小时,经销商对
型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:

某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,
型20瓦和
型55瓦的两种节能灯照明效果相当,都适合安装.已知
型和
型节能灯每支的价格分别为120元、25元,当地商业电价为0.75元/千瓦时.假定该店面一年周转期的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯管更换.(用频率估计概率)
(Ⅰ)根据频率直方图估算
型节能灯的平均使用寿命;
(Ⅱ)根据统计知识知,若一支灯管一年内需要更换的概率为
,那么
支灯管估计需要更换
支.若该商家新店面全部安装了
型节能灯,试估计一年内需更换的支数;
(Ⅲ)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.





某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,




(Ⅰ)根据频率直方图估算

(Ⅱ)根据统计知识知,若一支灯管一年内需要更换的概率为




(Ⅲ)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.
为了应对日益严重的交通压力和空气质量问题,某城市准备出台新的交通限行政策,为了了解市民对“汽车限行”的态度,在当地市民中随机选取100人进行调查,调查情况如表:
(Ⅰ)求出表格中n的值,并完成参与调查的市民年龄的频率分布直方图;
(Ⅱ)从这100人中任选1人,若这个人赞成汽车限行,求其年龄在[35,45)的概率;
(Ⅲ)若从年龄在[45,55)的参与调查的市民中按照是否赞成汽车限行进行分层抽样,从中抽取10人参与某项调查,然后再从这10人中随机抽取3人参加座谈会,记这3人中赞成汽车限行的人数为随机变量X,求X的分布列及数学期望.
年龄段 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
调查人数 | 5 | 15 | 20 | n | 20 | 10 |
赞成人数 | 3 | 12 | 17 | 18 | 16 | 2 |
(Ⅰ)求出表格中n的值,并完成参与调查的市民年龄的频率分布直方图;
(Ⅱ)从这100人中任选1人,若这个人赞成汽车限行,求其年龄在[35,45)的概率;
(Ⅲ)若从年龄在[45,55)的参与调查的市民中按照是否赞成汽车限行进行分层抽样,从中抽取10人参与某项调查,然后再从这10人中随机抽取3人参加座谈会,记这3人中赞成汽车限行的人数为随机变量X,求X的分布列及数学期望.

2018年的政府工作报告强调,要树立绿水青山就是金山银山理念,以前所未有的决心和力度加强生态环境保护.某地科技园积极检查督导园区内企业的环保落实情况,并计划采取激励措施引导企业主动落实环保措施,下图给出的是甲、乙两企业2012年至2017年在环保方面投入金额(单位:万元)的柱状图.

(Ⅰ)分别求出甲、乙两企业这六年在环保方面投入金额的平均数;(结果保留整数)
(Ⅱ)园区管委会为尽快落实环保措施,计划对企业进行一定的奖励,提出了如下方案:若企业一年的环保投入金额不超过200万元,则该年不奖励;若企业一年的环保投入金额超过200万元,不超过300万元,则该年奖励20万元;若企业一年的环保投入金额超过300万元,则该年奖励50万元.
(ⅰ)分别求出甲、乙两企业这六年获得的奖励之和;
(ⅱ)现从甲企业这六年中任取两年对其环保情况作进一步调查,求这两年获得的奖励之和不低于70万元的概率.

(Ⅰ)分别求出甲、乙两企业这六年在环保方面投入金额的平均数;(结果保留整数)
(Ⅱ)园区管委会为尽快落实环保措施,计划对企业进行一定的奖励,提出了如下方案:若企业一年的环保投入金额不超过200万元,则该年不奖励;若企业一年的环保投入金额超过200万元,不超过300万元,则该年奖励20万元;若企业一年的环保投入金额超过300万元,则该年奖励50万元.
(ⅰ)分别求出甲、乙两企业这六年获得的奖励之和;
(ⅱ)现从甲企业这六年中任取两年对其环保情况作进一步调查,求这两年获得的奖励之和不低于70万元的概率.
某电视台为宣传本市,随机对本市内
岁的人群抽取了
人,回答问题“本市内著名旅游景点有哪些” ,统计结果如图表所示.

(1)分别求出
的值;
(2)根据频率分布直方图估计这组数据的中位数(保留小数点后两位)和平均数;
(3)若第1组回答正确的人员中,有2名女性,其余为男性,现从中随机抽取2人,求至少抽中1名女性的概率.


组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的频率 |
第1组 | [15,25) | a | 0.5 |
第2组 | [25,35) | 18 | x |
第3组 | [35,45) | b | 0.9 |
第4组 | [45,55) | 9 | 0.36 |
第5组 | [55,65] | 3 | y |

(1)分别求出

(2)根据频率分布直方图估计这组数据的中位数(保留小数点后两位)和平均数;
(3)若第1组回答正确的人员中,有2名女性,其余为男性,现从中随机抽取2人,求至少抽中1名女性的概率.
蔬菜批发市场销售某种蔬菜,在一个销售周期内,每售出1吨该蔬菜获利500元,未售出的蔬菜低价处理,每吨亏损100元.统计该蔬菜以往100个销售周期的市场需求量,绘制下图所示频率分布直方图.

(Ⅰ)求
的值,并求100个销售周期的平均市场需求量(以各组的区间中点值代表该组的数值);
(Ⅱ)若经销商在下个销售周期购进了190吨该蔬菜,设
为该销售周期的利润(单位:元),
为该销售周期的市场需求量(单位:吨).求
与
的函数解析式,并估计销售的利润不少于86000元的概率.

(Ⅰ)求

(Ⅱ)若经销商在下个销售周期购进了190吨该蔬菜,设



