某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.

(1)求样本容量及样本中净重大于或等于96克并且小于102克的产品的个数;
(2)已知这批产品中每个产品的利润y(单位:元)与产品净重x(单位:克)的关系式为求这批产品平均每个的利润.
当前题号:1 | 题型:解答题 | 难度:0.99
为了了解某市高三学生的身体情况,某健康研究协会对该市高三学生组织了两次体测,其中第一次体测的成绩(满分:100分)的频率分布直方图如下图所示,第二次体测的成绩.

(Ⅰ)试通过计算比较两次体测成绩平均分的高低;
(Ⅱ)若该市有高三学生20000人,记体测成绩在70分以上的同学的身体素质为优秀,假设这20000人都参与了第二次体测,试估计第二次体测中身体素质为优秀的人数;
(Ⅲ)以频率估计概率,若在参与第一次体测的学生中随机抽取4人,记这4人成绩在的人数为,求的分布列及数学期望.
附:
.
当前题号:2 | 题型:解答题 | 难度:0.99
对一学校的高二年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数;据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组
频数
频率

10
0.25

24





2
0.05
合计

1
 

(Ⅰ) 求出表中及图中的值;
(Ⅱ) 若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间内的人数;
(Ⅲ) 在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
当前题号:3 | 题型:解答题 | 难度:0.99
某中学有学生500人,学校为了解学生课外阅读时间,从中随机抽取了50名学生,收集了他们2018年10月课外阅读时间(单位:小时)的数据,并将数据进行整理,分为5组:[10,12),[12,14),[14,16),[16,18),[18,20],得到如图所示的频率分布直方图.

(Ⅰ)试估计该校所有学生中,2018年10月课外阅读时间不小于16小时的学生人数;
(Ⅱ)已知这50名学生中恰有2名女生的课外阅读时间在[18,20],现从课外阅读时间在[18,20]的样本对应的学生中随机抽取2人,求至少抽到1名女生的概率;
(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,试估计该校学生2018年10月课外阅读时间的平均数.
当前题号:4 | 题型:解答题 | 难度:0.99
汉字听写大会不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组,第2组,第6组,如图是按上述分组方法得到的频率分布直方图.

若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率
试估计该市市民正确书写汉字的个数的中位数;
已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以分组的频率分布直方图如图所示.
根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;
用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布
估计该市居民月平均用电量介于度之间的概率;
利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望
当前题号:6 | 题型:解答题 | 难度:0.99
在某市高三教学质量检测中,全市共有5000名学生参加了本次考试,其中示范性高中参加考试学生人数为2000人,非示范性高中参加考试学生人数为3000人.现从所有参加考试的学生中随机抽取100人,作检测成绩数据分析.

(1)设计合理的抽样方案(说明抽样方法和样本构成即可);
(2)依据100人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;
(3)如果规定成绩不低于130分为特别优秀,现已知语文特别优秀占样本人数的,语文、数学两科都特别优秀的共有3人,依据以上样本数据,完成列联表,并分析是否有的把握认为语文特别优秀的同学,数学也特别优秀.
 
语文特别优秀
语文不特别优秀
合计
数学特别优秀
 
 
 
数学不特别优秀
 
 
 
合计
 
 
 
 
参考公式:
参考数据:

0.50
0.40

0.010
0.005
0.001

0.455
0.708

6.635
7.879
10.828
 
当前题号:7 | 题型:解答题 | 难度:0.99
某高科技公司投入1000万元研发某种产品,大规模投产后,在产品出库进入市场前,需做严格的质量检验.为此,从库房的产品中随机抽取200件,检测一项关键的质量指标值(记为),由检测结果得到如下样本频率分布直方图:

(1)求这200件产品质量指标值的样本平均数,样本方差(同一组数据用该区间的中点值作代表);
(2)该公司规定:当时,产品为正品;当时,产品为次品.公司每生产一件这种产品,若是正品,则盈利80元;若是次品,则亏损20元.
①估计这200件产品中正品、次品各有多少件;
②求公司生产一件这种产品的平均利润.
当前题号:8 | 题型:解答题 | 难度:0.99
某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有Ⅳ人参加,现将所有参加者按年龄情况分为等七组,其频率分布直方图如图所示,已知这组的参加者是6人.

(1)根据此频率分布直方图求该校参加秋季登山活动的教职工年龄的中位数;
(2)已知这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中恰有1名数学老师的概率;
(3)组织者从这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为,求的分布列和均值.
当前题号:9 | 题型:解答题 | 难度:0.99
某单位共有职工1000人,其中男性700人,女性300人,为调查该单位职工每周平均体育运动时间的情况,采用分层抽样的方法,收集200位职工每周平均体育运动时间的样本数据(单位:小时).

(1)根据这200个样本数据,得到职工每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:.估计该单位职工每周平均体育运动时间超过4小时的概率;
(2)估计该单位职工每周平均体育运动时间的平均数和中位数(保留两位小数);
(3)在样本数据中,有40位女职工的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有90%的把握认为“该单位职工的每周平均体育运动时间与性别有关”,

0.10
0.05
0.010
0.005

2.706
3.841
6.635
7.879
 
附:.
当前题号:10 | 题型:解答题 | 难度:0.99