- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在
之间,其得分的频率分布直方图如图,则下列结论错误的是( )



A.得分在![]() |
B.从这100名参赛者中随机选取1人,其得分在![]() |
C.估计得分的众数为55 |
D.这100名参赛者得分的中位数为65 |
半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.
根据频率分布直方图,估计这50名同学的数学平均成绩;
用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在
中的概率.




某工厂采用甲、乙两种不同生产方式生产某零件,现对两种生产方式所生产的这种零件的产品质量进行对比,其质量按测试指标可划分为:指标在区间
的为一等品;指标在区间
的为二等品,现分别从甲、乙两种不同生产方式所生产的零件中,各自随机抽取100件作为样本进行检测,测试指标结果的频率分布直方图如图所示:

若从甲种生产方式生产的这100件零件中按等级,利用分层抽样的方法抽取5件,再从这5件零件中随机抽取3件,求至少有1件一等品的概率;
该厂所生产这种零件,若是一等品每件可售50元,若是二等品每件可售20元
甲种生产方式每生产一件零件
无论是一等品还是二等品
的成本为10元,乙种生产方式每生产一件零件
无论是一等品还是二等品
的成本为18元
将频率分布直方图中的频率视作概率,用样本估计总体比较在甲、乙两种不同生产方式下,哪种生产方式生产的零件所获得的平均利润较高?











某工厂采用甲、乙两种不同生产方式生产某零件,现对两种生产方式所生产的这种零件的产品质量进行对比,其质量按测试指标可划分为:指标在区间
100的为一等品;指标在区间
的为二等品
现分别从甲、乙两种不同生产方式所生产的零件中,各自随机抽取100件作为样本进行检测,测试指标结果的频率分布直方图如图所示:

若在甲种生产方式生产的这100件零件中按等级,利用分层抽样的方法抽取10件,再从这10件零件中随机抽取3件,求至少有1件一等品的概率;
将频率分布直方图中的频率视作概率,用样本估计总体
若从该厂采用乙种生产方式所生产的所有这种零件中随机抽取3件,记3件零件中所含一等品的件数为X,求X的分布列及数学期望.







某市10000名职业中学高三学生参加了一项综合技能测试,从中随机抽取100名学生的测试成绩,制作了以下的测试成绩
(满分是184分)的频率分布直方图.

市教育局规定每个学生需要缴考试费100元.某企业根据这100000名职业中学高三学生综合技能测试成绩来招聘员工,划定的招聘录取分数线为172分,且补助已经被录取的学生每个人
元的交通和餐补费.
(1)已知甲、乙两名学生的测试成绩分别为168分和170分,求技能测试成绩
的中位数,并对甲、乙的成绩作出客观的评价;
(2)令
表示每个学生的交费或获得交通和餐补费的代数和,把
用
的函数来表示,并根据频率分布直方图估计
的概率.


市教育局规定每个学生需要缴考试费100元.某企业根据这100000名职业中学高三学生综合技能测试成绩来招聘员工,划定的招聘录取分数线为172分,且补助已经被录取的学生每个人

(1)已知甲、乙两名学生的测试成绩分别为168分和170分,求技能测试成绩

(2)令




过去大多数人采用储蓄的方式将钱储蓄起来,以保证自己生活的稳定
考虑到通货膨胀的压力,如果我们把所有的钱都用来储蓄,这并不是一种很好的方式
随着金融业的发展,普通人能够使用的投资理财工具也多了起来
为了研究某种理财工具的使用情况,现对
年龄段的人员进行了调查研究,将各年龄段人数分成5组:
,
,
,
,
,并整理得到频率分布直方图:

Ⅰ
估计使用这种理财工具的人员年龄的中位数、平均数;
Ⅱ
采用分层抽样的方法,从第二组、第三组、第四组中共抽取8人,则三个组中各抽取多少人?
Ⅲ
在
Ⅱ
中抽取的8人中,随机抽取2人,则第三组至少有1个人被抽到的概率是多少?


















港珠澳大桥是中国建设史上里程最长,投资最多,难度最大的跨海桥梁项目,大桥建设需要许多桥梁构件.从某企业生产的桥梁构件中抽取
件,测量这些桥梁构件的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间
,
,
内的频率之比为
.

(1)求这些桥梁构件质量指标值落在区间
内的频率;
(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取
件,记这
件桥梁构件中质量指标值位于区间
内的桥梁构件件数为
,求
的分布列与数学期望.






(1)求这些桥梁构件质量指标值落在区间

(2)若将频率视为概率,从该企业生产的这种桥梁构件中随机抽取





某工厂对一批产品进行了抽样检测,下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是
, 样本数据分组为
,
,
,
,
,则这组数据中众数的估计值是:( )








A.100 | B.101 | C.102 | D.103 |
某学校为了了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,结果这100人的体重全部介于45公斤到75公斤之间,现将结果按如下方式分为6组:第一组[45,50),第二组[50,55),…,第六组[70,75),得到如下图(1)所示的频率分布直方图,并发现这100人中,其体重低于55公斤的有15人,这15人体重数据的茎叶图如图(2)所示,以样本的频率作为总体的概率.

(I)求频率分布直方图中
的值;
(II)从全校学生中随机抽取3名学生,记X为体重在[55,65)的人数,求X的概率分布列和数学期望;
(III)由频率分布直方图可以认为,该校学生的体重
近似服从正态分布
,其中
若
,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.

(I)求频率分布直方图中

(II)从全校学生中随机抽取3名学生,记X为体重在[55,65)的人数,求X的概率分布列和数学期望;
(III)由频率分布直方图可以认为,该校学生的体重




某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如图频率分布直方图(其中分组区间为[40,50),[50,60),…,[90,100]).
(1)求成绩在[70,80)的频率和[70,80)这组在频率分布直方图中的纵坐标a的值;
(2)求这次考试平均分的估计值.
(1)求成绩在[70,80)的频率和[70,80)这组在频率分布直方图中的纵坐标a的值;
(2)求这次考试平均分的估计值.
