某水产品经销商销售某种鲜鱼,售价为每公斤元,成本为每公斤元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失元.根据以往的销售情况,按进行分组,得到如图所示的频率分布直方图.

(1)根据频率分布直方图计算该种鲜鱼日需求量的平均数(同一组中的数据用该组区间中点值代表);
(2)该经销商某天购进了公斤这种鲜鱼,假设当天的需求量为公斤,利润为元.求关于的函数关系式,并结合频率分布直方图估计利润不小于元的概率.
当前题号:1 | 题型:解答题 | 难度:0.99
某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求分数在[120,130)内的频率;
(2)估计本次考试的中位数;
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.
当前题号:2 | 题型:解答题 | 难度:0.99
某市市民用水拟实行阶梯水价,每人用水量不超过立方米的部分按元/立方米收费,超出立方米的部分按元/立方米收费,从该市随机调查了位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,

(Ⅰ)求的值及居民用水量介于的频数;
(Ⅱ)根据此次调查,为使以上居民月用水价格为元/立方米,应定为多少立方米?(精确到小数点后位)
(Ⅲ)若将频率视为概率,现从该市随机调查名居民的用水量,将月用水量不超过立方米的人数记为,求其分布列及其均值.
当前题号:3 | 题型:解答题 | 难度:0.99
手机给人们的生活带来便利的同时,也给青少年的成长带来不利的影响,有人沉迷于手机游戏无法自拔,严重影响了自己的学业,某学校随机抽取个班,调查各班带手机来学校的人数,所得数据的茎叶图如图所示.以组距为将数据分组成,…,时,所作的频率分布直方图是(    )
A.B.
C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
销售某种活虾,根据以往的销售情况,按日需量x(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500] 进行分组,得到如图所示的频率分布直方图.

这种活虾经销商进价成本为每公斤15元,当天进货当天以每公斤20元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某水产品经销商某天购进了300公斤这种活虾,设当天利润为Y元.

(1)求Y关于x的函数关系式;

(2)结合直方图估计利润Y不小于300元的概率.

当前题号:5 | 题型:解答题 | 难度:0.99
销售某种活虾,根据以往的销售情况,按日需量x(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500] 进行分组,得到如图所示的频率分布直方图.这种活虾经销商进价成本为每公斤15元,当天进货当天以每公斤20元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某水产品经销商某天购进了300公斤这种活虾,设当天利润为Y元.
(1)求Y关于x的函数关系式;
(2)结合直方图估计利润Y不小于300元的概率;
(3)在直方图的日需量分组中,以各组的区间中点值代表该组的各个值,日需量落入该区间的频率作为日需量取该区间中点值的概率,求Y的平均估计值.
当前题号:6 | 题型:解答题 | 难度:0.99
随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各随机抽取了名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了个区间:,整理得到如下频率分布直方图:

根据一周内平均每天学习数学的时间,将学生对于数学的喜好程度分为三个等级:
学习时间(分钟/天)



喜好等级
一般
爱好
痴迷
 
(Ⅰ)试估计甲高中学生一周内平均每天学习数学的时间的中位数(精确到);
(Ⅱ)判断从甲、乙两所高中各自随机抽取的名学生一周内平均每天学习数学的时间的平均值及方差的大小关系(只需写出结论),并计算其中的(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)记事件:“甲高中学生对数学的喜好等级高于乙高中学生对数学的喜好等级”.根据所给数据,以事件发生的频率作为相应事件发生的概率,求的概率.
当前题号:7 | 题型:解答题 | 难度:0.99
某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:

   注:尺寸数据在内的零件为合格品,频率作为概率.
(Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望;   
(Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;
(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?
当前题号:8 | 题型:解答题 | 难度:0.99
在十九大“建设美丽中国”的号召下,某省级生态农业示范县大力实施绿色生产方案,对某种农产品进行改良,为了检查改良效果,从中随机抽取100件作为样本,称出它们的重量(单位:克),重量分组区间为,由此得到样本的重量频率分布直方图(如图).

(1)求的值;
(2)根据样本数据,估计样本中个体的重量的众数与平均值;
(3)以样本数据来估计总体数据,从改良的农产品中随机抽取3个个体,其中重量在内的个体的个数为,求的分布列和数学期望.(以直方图中的频率作为概率)
当前题号:9 | 题型:解答题 | 难度:0.99
某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示根据条形图可得这50名学生这一天平均的课外阅读时间为______小时.
当前题号:10 | 题型:填空题 | 难度:0.99