- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某水产品经销商销售某种鲜鱼,售价为每公斤
元,成本为每公斤
元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失
元.根据以往的销售情况,按
,
,
,
,
进行分组,得到如图所示的频率分布直方图.

(1)根据频率分布直方图计算该种鲜鱼日需求量的平均数
(同一组中的数据用该组区间中点值代表);
(2)该经销商某天购进了
公斤这种鲜鱼,假设当天的需求量为
公斤
,利润为
元.求
关于
的函数关系式,并结合频率分布直方图估计利润
不小于
元的概率.









(1)根据频率分布直方图计算该种鲜鱼日需求量的平均数

(2)该经销商某天购进了








某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

(1)求分数在[120,130)内的频率;
(2)估计本次考试的中位数;
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.

(1)求分数在[120,130)内的频率;
(2)估计本次考试的中位数;
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.
某市市民用水拟实行阶梯水价,每人用水量不超过
立方米的部分按
元/立方米收费,超出
立方米的部分按
元/立方米收费,从该市随机调查了
位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,

(Ⅰ)求
的值及居民用水量介于
的频数;
(Ⅱ)根据此次调查,为使
以上居民月用水价格为
元/立方米,应定为多少立方米?(精确到小数点后
位)
(Ⅲ)若将频率视为概率,现从该市随机调查
名居民的用水量,将月用水量不超过
立方米的人数记为
,求其分布列及其均值.






(Ⅰ)求


(Ⅱ)根据此次调查,为使



(Ⅲ)若将频率视为概率,现从该市随机调查



手机给人们的生活带来便利的同时,也给青少年的成长带来不利的影响,有人沉迷于手机游戏无法自拔,严重影响了自己的学业,某学校随机抽取
个班,调查各班带手机来学校的人数,所得数据的茎叶图如图所示.以组距为
将数据分组成
,
,…,
,
时,所作的频率分布直方图是( )








A.![]() | B.![]() |
C.![]() | D.![]() |
销售某种活虾,根据以往的销售情况,按日需量x(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500] 进行分组,得到如图所示的频率分布直方图.
这种活虾经销商进价成本为每公斤15元,当天进货当天以每公斤20元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某水产品经销商某天购进了300公斤这种活虾,设当天利润为Y元.
(1)求Y关于x的函数关系式;
(2)结合直方图估计利润Y不小于300元的概率.
销售某种活虾,根据以往的销售情况,按日需量x(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500] 进行分组,得到如图所示的频率分布直方图.这种活虾经销商进价成本为每公斤15元,当天进货当天以每公斤20元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某水产品经销商某天购进了300公斤这种活虾,设当天利润为Y元.
(1)求Y关于x的函数关系式;
(2)结合直方图估计利润Y不小于300元的概率;
(3)在直方图的日需量分组中,以各组的区间中点值代表该组的各个值,日需量落入该区间的频率作为日需量取该区间中点值的概率,求Y的平均估计值.
(1)求Y关于x的函数关系式;
(2)结合直方图估计利润Y不小于300元的概率;
(3)在直方图的日需量分组中,以各组的区间中点值代表该组的各个值,日需量落入该区间的频率作为日需量取该区间中点值的概率,求Y的平均估计值.

随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各随机抽取了
名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了
个区间:
、
、
、
、
、
,整理得到如下频率分布直方图:

根据一周内平均每天学习数学的时间
,将学生对于数学的喜好程度分为三个等级:
(Ⅰ)试估计甲高中学生一周内平均每天学习数学的时间的中位数
(精确到
);
(Ⅱ)判断从甲、乙两所高中各自随机抽取的
名学生一周内平均每天学习数学的时间的平均值
与
及方差
与
的大小关系(只需写出结论),并计算其中的
、
(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)记事件
:“甲高中学生对数学的喜好等级高于乙高中学生对数学的喜好等级”.根据所给数据,以事件发生的频率作为相应事件发生的概率,求
的概率.









根据一周内平均每天学习数学的时间

学习时间(分钟/天) | ![]() | ![]() | ![]() |
喜好等级 | 一般 | 爱好 | 痴迷 |
(Ⅰ)试估计甲高中学生一周内平均每天学习数学的时间的中位数


(Ⅱ)判断从甲、乙两所高中各自随机抽取的







(Ⅲ)记事件


某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了
个进行测量,根据所测量的数据画出频率分布直方图如下:
内的零件为合格品,频率作为概率.
(Ⅰ) 从产品中随机抽取
件,合格品的个数为
,求
的分布列与期望;
(Ⅱ) 从产品中随机抽取
件,全是合格品的概率不小于
,求
的最大值;
(Ⅲ) 为了提高产品合格率,现提出
两种不同的改进方案进行试验.若按
方案进行试验后,随机抽取
件产品,不合格个数的期望是
;若按
方案试验后,抽取
件产品,不合格个数的期望是
,你会选择哪个改进方案?


(Ⅰ) 从产品中随机抽取



(Ⅱ) 从产品中随机抽取



(Ⅲ) 为了提高产品合格率,现提出







在十九大“建设美丽中国”的号召下,某省级生态农业示范县大力实施绿色生产方案,对某种农产品进行改良,为了检查改良效果,从中随机抽取100件作为样本,称出它们的重量(单位:克),重量分组区间为
,
,
,
,由此得到样本的重量频率分布直方图(如图).

(1)求
的值;
(2)根据样本数据,估计样本中个体的重量的众数与平均值;
(3)以样本数据来估计总体数据,从改良的农产品中随机抽取3个个体,其中重量在
内的个体的个数为
,求
的分布列和数学期望.(以直方图中的频率作为概率)





(1)求

(2)根据样本数据,估计样本中个体的重量的众数与平均值;
(3)以样本数据来估计总体数据,从改良的农产品中随机抽取3个个体,其中重量在



某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示
根据条形图可得这50名学生这一天平均的课外阅读时间为______小时.

