- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2018年某市政府为了有效改善市区道路交通拥堵状况出台了一系列的改善措施.其中市区公交站点重新布局和建设作为重点项目.市政府相关部门根据交通拥堵情况制定了“市区公交站点重新布局方案”,现准备对该“方案”进行调查,并根据调查结果决定是否启用该“方案”,调查人员分别在市区的各公交站点随机抽取若干市民对该“方案”进行评分,并将结果绘制成如图所示的频率分布直方图.相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,
内认定为满意,不低于
分认定为非常满意;③市民对公交站点布局的满意率不低于
即可启用该“方案”;④用样本的频率代替概率.

(1)从该市市民中随机抽取
人,求恰有
人非常满意该“方案”的概率;并根据所学统计学知识判断该市是否启用该“方案”,说明理由;
(2)已知在评分低于
分的被调查者中,老年人占
,现从评分低于
分的被调查者中按年龄分层抽取
人以便了解不满意的原因,并从中抽取
人担任群众监督员,记
为群众监督员中老年人的人数,求随机变量
的分布列及其数学期望
.




(1)从该市市民中随机抽取


(2)已知在评分低于








某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测
株树苗的高度,经数据处理得到如图的频率分布直方图,起中最高的
株树苗高度的茎叶图如图所示,以这
株树苗的高度的频率估计整批树苗高度的概率.
(1)求这批树苗的高度高于
米的概率,并求图19-1中,
,
,
的值;
(2)若从这批树苗中随机选取
株,记
为高度在
的树苗数列,求
的分布列和数学期望.
(3)若变量
满足
且
,则称变量
满足近似于正态分布
的概率分布.如果这批树苗的高度满足近似于正态分布
的概率分布,则认为这批树苗是合格的,将顺利获得签收;否则,公司将拒绝签收.试问,该批树苗能否被签收?




(1)求这批树苗的高度高于




(2)若从这批树苗中随机选取




(3)若变量






电子商务公司对某市50000名网络购物者2017年度的消费情况进行统计,发现消费金额都在5000元到10000元之间,其频率分布直方图如下:

(1)求图中
的值,并求出消费金额不低于8000元的购物者共多少人;
(2)若将频率视为概率,从购物者中随机抽取50人,记消费金额在7000元到9000元的人数为
,求
的数学期望和方差.

(1)求图中

(2)若将频率视为概率,从购物者中随机抽取50人,记消费金额在7000元到9000元的人数为


某市为了解本市
万名学生的汉字书写水平,在全市范围内进行了汉字听写考试,发现其成绩服从正态分布
,现从某校随机抽取了
名学生,将所得成绩整理后,绘制出如图所示的频率分布直方图.

(1)估算该校
名学生成绩的平均值
(同一组中的数据用该组区间的中点值作代表);
(2)求这
名学生成绩在
内的人数;
(3)现从该校
名考生成绩在
的学生中随机抽取两人,该两人成绩排名(从高到低)在全市前
名的人数记为
,求
的分布列和数学期望.
参考数据:若
,则
,





(1)估算该校


(2)求这


(3)现从该校





参考数据:若




据统计,2017年国庆中秋假日期间,黔东南州共接待游客590.23万人次,实现旅游收入48.67亿元,同比分别增长44.57%、55.22%.旅游公司规定:若公司导游接待旅客,旅游年总收入不低于40(单位:百万元),则称为优秀导游.经验表明,如果公司的优秀导游率越高,则该公司的影响度越高.已知甲、乙两家旅游公司各有导游100名,统计他们一年内旅游总收入,分别得到甲公司的频率分布直方图和乙公司的频数分布表如下:

(Ⅰ)求
的值,并比较甲、乙两家旅游公司,哪家的影响度高?
(Ⅱ)若导游的奖金
(单位:万元),与其一年内旅游总收入
(单位:百万元)之间的关系为
,求甲公司导游的年平均奖金;
(Ⅲ)从甲、乙两家公司旅游收入在
的总人数中,用分层抽样的方法随机抽取6人进行表彰,其中有两名导游代表旅游行业去参加座谈,求参加座谈的导游中有乙公司导游的概率.

分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | 18 | 49 | 24 | 5 |
(Ⅰ)求

(Ⅱ)若导游的奖金



(Ⅲ)从甲、乙两家公司旅游收入在

某校高一(1)班全体男生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图所示,据此解答如下问题:
(1)求该班全体男生的人数;
(2)求分数在
之间的男生人数,并计算频率公布直方图中
之间的矩形的高;
(3)根据频率分布直方图,估计该班全体男生的数学平均成绩(同一组中的数据用该组区间的中点值代表).
(1)求该班全体男生的人数;
(2)求分数在


(3)根据频率分布直方图,估计该班全体男生的数学平均成绩(同一组中的数据用该组区间的中点值代表).

某企业员工500人参加“学雷锋”活动,按年龄共分六组,得频率分布直方图如下:

(1)现在要从年龄较小的第1、2、3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的各抽取多少人?
(2)在第(1)问的前提下,从这6人中随机抽取2人参加社区活动,求至少有1人年龄在第3组的概率.

(1)现在要从年龄较小的第1、2、3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的各抽取多少人?
(2)在第(1)问的前提下,从这6人中随机抽取2人参加社区活动,求至少有1人年龄在第3组的概率.
哈三中数学竞赛辅导班进行选拔性测试,且规定:成绩大于等于110分的有参加资格,110分以下
不包括110分
的则淘汰
若现有1500人参加测试,频率分布直方图如下:

Ⅰ
求获得参加资格的人数;
Ⅱ
根据频率直方图,估算这1500名学生测试的平均成绩.








某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果分成六组,得到频率分布直方图
如图
设成绩小于16秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为







A.![]() |
B.![]() |
C.![]() |
D.![]() |
为了解学生对“两个一百年”奋斗目标、实现中华民族伟大复兴中国梦的“关注度”(单位:天),某中学团委组织学生在十字路口采用随机抽样的方法抽取了80名青年学生(其中男女人数各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组青年学生的月“关注度”分为6组:
,
,
,
,
,
,得到如图所示的频率分布直方图.

(1)求
的值;
(2)现从“关注度”在
的男生与女生中选取3人,设这3人来自男生的人数为
,求
的分布列与期望;
(3)在抽取的80名青年学生中,从月“关注度”不少于25天的人中随机抽取2人,求至少抽取到1名女生的概率.







(1)求

(2)现从“关注度”在



(3)在抽取的80名青年学生中,从月“关注度”不少于25天的人中随机抽取2人,求至少抽取到1名女生的概率.