某校100名学生期末考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:.
(Ⅰ)求图中的值;
(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(Ⅲ)若成绩在的学生中男生比女生多一人,且从成绩在的学生中任选2人,求此2人都是男生的概率.
当前题号:1 | 题型:解答题 | 难度:0.99
为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.
当前题号:2 | 题型:填空题 | 难度:0.99
某企业根据供销合同生产某种型号零件10万件,规定:零件长度(单位:毫米)在区间内,则为一等品;若长度在内,则为二等品;否则为不合格产品.现从生产出的零件中随机抽取100件作样本,其长度数据的频率分布直方图如图所示.
(1)试估计该样本的平均数;
(2)根据合同,企业生产的每件一等品可获利10元,每件二等品可获利8元,每件不合格产品亏损6元,若用样本估计总体,试估算该企业生产这批零件所获得的利润.
当前题号:3 | 题型:解答题 | 难度:0.99
某贫困地区有1500户居民,其中平原地区1050户,山区450户,为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元)
(I)应收集多少户山区家庭的样本数据?
(Ⅱ)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为, , , ,,.如果将频率率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;
(Ⅲ)样本数据中,由5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?
附:

0.100
0.050
0.010
0.001

2.706
3.841
6.635
10.828
 
 
超过2万元
不超过2万元
总计
平原地区
 
 
 
山区
5
 
 
总计
 
 
 
 
当前题号:4 | 题型:解答题 | 难度:0.99
据悉,2017年教育机器人全球市场规模已达到8.19亿美元,中国占据全球市场份额10.8%.通过简单随机抽样得到40家中国机器人制造企业,下图是40家企业机器人的产值频率分布直方图.

(1)求的值;
(2)在上述抽取的40个企业中任取3个,抽到产值小于500万元的企业不超过两个的概率是多少?
(3)在上述抽取的40个企业中任取2个,设为产值不超过500万元的企业个数减去超过500万元的企业个数的差值,求的分布列及期望.
当前题号:5 | 题型:解答题 | 难度:0.99
如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题:
(1)这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛的及格率(分及以上为及格)和平均数?
当前题号:6 | 题型:解答题 | 难度:0.99
某企业响应省政府号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.如图是设备改造前的样本的频率分布直方图,表是设备改造后的样本的频数分布表.

表:设备改造后样本的频数分布表
质量指标值






频数






 
(1)完成下面的列联表,并判断是否有的把握认为该企业生产的这种产品的质量指标值与设备改造有关;
 
设备改造前
设备改造后
合计
合格品
 
 
 
不合格品
 
 
 
合计
 
 
 
 
(2)根据频率分布直方图和表 提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;
(3)企业将不合格品全部销毁后,根据客户需求对合格品进行登记细分,质量指标值落在内的定为一等品,每件售价元;质量指标值落在内的定为二等品,每件售价元;其它的合格品定为三等品,每件售价元.根据表的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为(单位:元),求的分布列和数学期望.
附:












 
当前题号:7 | 题型:解答题 | 难度:0.99
某少儿游泳队需对队员进行限时的仰卧起坐达标测试;已知队员的测试分数与仰卧起坐
个数之间的关系如下:;测试规则:每位队员最多进行三组测试,
每组限时1分钟,当一组测完,测试成绩达到60分或以上时,就以此组测试成绩作为该
队员的成绩,无需再进行后续的测试,最多进行三组;根据以往的训练统计,队员“喵儿”
在一分钟内限时测试的频率分布直方图如下:

(1)计算值,并根据直方图计算“喵儿”1分钟内仰卧起坐的个数;
(2)计算在本次的三组测试中,“喵儿”得分等于的概率.
当前题号:8 | 题型:解答题 | 难度:0.99
2018年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表.

(1)求的值,并作出这些数据的频率分布直方图;

(2)现从第3、4、5组中用分层抽样的方法抽取6人参加校“中华诗词比赛”,经过比赛后从这6人中选拔2人组成该校代表队,求这2人来自不同组别的概率;
(3)假设每组数据组间是平均分布的,若该校希望使15%的学生的一周课外阅读时间不低于(小时)的时间,作为评选该校“课外阅读能手”的依据,试估计该值,并说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
2018年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表.

(Ⅰ)求的值,并作出这些数据的频率分布直方图;

(Ⅱ)假设每组数据组间是平均分布的,试估计该组数据的平均数;(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)现从第3、4、5组中用分层抽样的方法抽取6人参加校“中华诗词比赛”,经过比赛后从这6人中选拔2人组成该校代表队,求这2人来自不同组别的概率.
当前题号:10 | 题型:解答题 | 难度:0.99