- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
南航集团与波音公司2018年2月在广州签署协议,双方合作的客改货项目落户广州空港经济区.根据协议,双方将在维修技术转让、支持项目、管理培训等方面开展战略合作.现组织者对招募的100名服务志愿者培训后,组织一次知识竞赛,将所得成绩制成如下频率分布直方图(假定每个分数段内的成绩均匀分布),组织者计划对成绩前20名的参赛者进行奖励.

(1)试求受奖励的分数线;
(2)从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上(含90分)的概率.

(1)试求受奖励的分数线;
(2)从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上(含90分)的概率.
某厂两个车间某天各20名员工生产的产品数量如下图

(2)题
(1)现在已经根据两组数据完成了乙车间的产量的茎叶图,请自己写出甲车间的茎叶图部分,并通过完整的茎叶图说明甲乙两个车间哪个车间的平均产量高?
(2)对乙车间的产量,以组数为5进行分组,选组距为9构造下面的频率分布图表,并根据频率分布表求出乙车间产量的均值.

甲车间 | 乙车间 |
50,52,56,62,65 | 56,66,67,68,72 |
66,67,68,69,73 | 72,74,75,75,76 |
74,75,76,78,81 | 76,77,77,78,79 |
82,83,87,90,97 | 80,81,84,88,98 |
(2)题
(1)现在已经根据两组数据完成了乙车间的产量的茎叶图,请自己写出甲车间的茎叶图部分,并通过完整的茎叶图说明甲乙两个车间哪个车间的平均产量高?
(2)对乙车间的产量,以组数为5进行分组,选组距为9构造下面的频率分布图表,并根据频率分布表求出乙车间产量的均值.
区间 | 频数 | 频率 |
![]() | | |
![]() | | |
![]() | | |
![]() | | |
![]() | | |
某房产销售公司从登记购房的客户中随机选取了50名客户进行调查,按他们购一套房的价格(万元)分成6组:
、
、
、
、
、
得到频率分布直方图如图所示.

用频率估计概率.房产销售公司卖出一套房,房地产商给销售公司的佣金如下表(单位:万元):
(1)求
的值;
(2)求房产销售公司卖出一套房的平均佣金;
(3)该房产销售公司每月(按30天计)的销售成本占总佣金的百分比按下表分段累计计算:
若该销售公司平均每天销售4套房,请估计公司月利润(利润=总佣金-销售成本).







用频率估计概率.房产销售公司卖出一套房,房地产商给销售公司的佣金如下表(单位:万元):
每一套房 价格区间 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
买一套房销售公司佣金收入 | 1 | 2 | 3 | 4 | 5 | 6 |
(1)求

(2)求房产销售公司卖出一套房的平均佣金;
(3)该房产销售公司每月(按30天计)的销售成本占总佣金的百分比按下表分段累计计算:
月总佣金 | 销售成本占佣金比例 |
不超过100万元的部分 | 5% |
超过100万元至200万元的部分 | 10% |
超过200万元至300万元的部分 | 15% |
超过300万元的部分 | 20% |
若该销售公司平均每天销售4套房,请估计公司月利润(利润=总佣金-销售成本).
某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等制划分标准为:85分及以上,记为
等;分数在
内,记为
等;分数在
内,记为
等;60分以下,记为
等.同时认定
为合格,
为不合格.已知甲,乙两所学校学生的原始成绩均分布在
内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照
的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为
的所有数据茎叶图如图2所示.

(Ⅰ)求图1中
的值,并根据样本数据比较甲乙两校的合格率;
(Ⅱ)在选取的样本中,从甲,乙两校
等级的学生中随机抽取3名学生进行调研,用
表示所抽取的3名学生中甲校的学生人数,求随机变量
的分布列和数学期望.












(Ⅰ)求图1中

(Ⅱ)在选取的样本中,从甲,乙两校



1995年联合国教科文组织宣布每年的4月23日为世界读书日,主旨宣言为“希望散居在全球各地的人们,都能享受阅读带来的乐趣,都能尊重和感谢为人类文明作出巨大贡献的文学、文化、科学思想的大师们,都能保护知识产权.”为了解大学生课外阅读情况,现从某高校随机抽取100名学生,将他们一年课外阅读量(单位:本)的数据,分成7组
,
,…,
,并整理得到如图频率分布直方图:

(1)估计其阅读量小于60本的人数;
(2)一只阅读量在
,
,
内的学生人数比为2:3:5.为了解学生阅读课外书的情况,现从阅读量在
内的学生中随机选取3人进行调查座谈,用
表示所选学生阅读量在
内的人数,求
的分布列和数学期望;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计100名学生该年课外阅读量的平均数在第几组(只需写出结论).




(1)估计其阅读量小于60本的人数;
(2)一只阅读量在







(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计100名学生该年课外阅读量的平均数在第几组(只需写出结论).
某大型商场为了了解顾客的购物信息,随机在商场收集了
位顾客的购物总额(单位元),将数据按照
,
分成
组,制成了如下图所示的频率分布直方图:

该商场每日大约有
名顾客,为了增加商场销售总额,近期对一次性购物不低于
元的顾客发放纪念品.
(1)求频率分布直方图中
的值,并估计每日应准备纪念品的数量;
(2)若每日按分层抽样的方法从购物总额在
三组对应的顾客中抽取
名顾客,这
名顾客中再随机抽取两名超级顾客,每人奖励一个超级礼包,求获得超级礼包的两人来自不同组的概率.







该商场每日大约有


(1)求频率分布直方图中

(2)若每日按分层抽样的方法从购物总额在



从某企业生产的产品的生产线上随机抽取200件产品,测量这批产品的一项质量指标值,由测量结果得如图所示的频率分布直方图:

(I)估计这批产品质量指标值的平均数
和方差
(同一组中的数据用该组区间的中点值作代表):
(Ⅱ)若该种产品的等级及相应等级产品的利润(每件)参照以下规则(其中
为产品质量指标值):
当
,该产品定为一等品,企业可获利200元;
当
且
,该产品定为二等品,企业可获利100元;
当
且
,该产品定为三等品,企业将损失500元;
否则该产品定为不合格品,企业将损失1000元.
(i)若测得一箱产品(5件)的质量指标数据分别为:76、85、93、105、112,求该箱产品的利润;
(ii)设事件
;專件
:事仵
.根据经验,对于该生产线上的产品,事件
发生的概率分别为0.6826、0.9544、0.9974.根据以上信息,若产品预计年产量为1000件,试估计该产品年获利情况.(参考数据:
)

(I)估计这批产品质量指标值的平均数


(Ⅱ)若该种产品的等级及相应等级产品的利润(每件)参照以下规则(其中

当

当


当


否则该产品定为不合格品,企业将损失1000元.
(i)若测得一箱产品(5件)的质量指标数据分别为:76、85、93、105、112,求该箱产品的利润;
(ii)设事件





某校600名文科学生参加了4月25日的三调考试,学校为了了解高三文科学生的数学、外语情况,利用随机数表法从抽取100名学生的成绩进行统计分析,将学生编号为000,001,002,…599
12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76
55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
(1)若从第6行第7列的数开始右读,请你一次写出最先抽出的5个人的编号(上面是摘自随机数表的第4行到第7行);
(2)抽出的100名学生的数学、外语成绩如下表:
若数学成绩优秀率为35%,求m,n的值;
(3)在外语成绩为良的学生中,已知m≥12,n≥10,求数学成绩优比良的人数少的概率.
12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76
55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
(1)若从第6行第7列的数开始右读,请你一次写出最先抽出的5个人的编号(上面是摘自随机数表的第4行到第7行);
(2)抽出的100名学生的数学、外语成绩如下表:
| 外语 | |||
优 | 良 | 及格 | ||
数学 | 优 | 8 | m | 9 |
良 | 9 | n | 11 | |
及格 | 8 | 9 | 11 |
若数学成绩优秀率为35%,求m,n的值;
(3)在外语成绩为良的学生中,已知m≥12,n≥10,求数学成绩优比良的人数少的概率.
某校高二(16)班共有50人,如图是该班在四校联考中数学成绩的频率分布直方图,则成绩在
内的学生人数为( )



A.36 | B.25 | C.22 | D.11 |
某校为调查高一、高二学生周日在家学习用时情况,随机抽取了高一、高二各
人,对他们的学习时间进行了统计,分别得到了高一学生学习时间(单位:小时)的频数分布表和高二学生学习时间的频率分布直方图.
高一学生学习时间的频数分布表(学习时间均在区间
内):
高二学生学习时间的频率分布直方图:

(1)求高二学生学习时间的频率分布直方图中的
值,并根据此频率分布直方图估计该校高二学生学习时间的中位数;
(2)利用分层抽样的方法,从高一学生学习时间在
,
的两组里随机抽取
人,再从这
人中随机抽取
人,求学习时间在
这一组中至少有
人被抽中的概率.

高一学生学习时间的频数分布表(学习时间均在区间

学习时间 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 3 | 1 | 8 | 4 | 2 | 2 |
高二学生学习时间的频率分布直方图:

(1)求高二学生学习时间的频率分布直方图中的

(2)利用分层抽样的方法,从高一学生学习时间在






