党的十八大以来,脱贫攻坚取得显著成绩.2013年至2016年4年间,累计脱贫5564万人,2017年各地根据实际进行创新,精准、高效地完成了脱贫任务.某地区对当地3000户家庭的2017年所的年收入情况调查统计,年收入的频率分布直方图如图所示,数据(单位:千元)的分组依次为,则年收入不超过6万的家庭大约为(    )
A.900户B.600户C.300户D.150户
当前题号:1 | 题型:单选题 | 难度:0.99
已知辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在的汽车大约有_________辆.
当前题号:2 | 题型:填空题 | 难度:0.99
上饶某购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取张进行统计,将结果分成5组,分别是,制成如图所示的频率分布直方图(假设消费金额均在元的区间内).

(1)若在消费金额为元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自元区间的概率;
(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案:
方案一:全场商品打8.5折;
方案二:全场购物满200元减20元,满400元减50元,满600元减80元,满800元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).
当前题号:3 | 题型:解答题 | 难度:0.99
某校有高三文科学生1000人,统计其高三上期期中考试的数学成绩,得到频率分布直方图如下:

(1)求出图中的值,并估计本次考试低于120分的人数;
(2)假设同组的每个数据可用该组区间的中点值代替,试估计本次考试不低于120分的同学的平均数(其结果保留一位小数).
当前题号:4 | 题型:解答题 | 难度:0.99
2018年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随机抽取80名群众进行调查,将他们的年龄分成6段:,,,,得到如图所示的频率分布直方图.问:

(Ⅰ)求这80名群众年龄的中位数;
(Ⅱ)若用分层抽样的方法从年龄在中的群众随机抽取6名,并从这6名群众中选派3人外出宣传黔东南,求选派的3名群众年龄在的概率.
当前题号:5 | 题型:解答题 | 难度:0.99
在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在,分数在以上(含)的同学获奖. 按文理科用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图(见下图).

I)在答题卡上填写下面的列联表,能否有超过的把握认为“获奖与学生的文理科有关”?
 
文科生
理科生
合计
获奖

 
 
不获奖
 
 
 
合计
 
 

 
II)将上述调査所得的频率视为概率,现从该校参与竞赛的学生中,任意抽取名学生,记“获奖”学生人数为,求的分布列及数学期望.
附表及公式:,其中.
当前题号:6 | 题型:解答题 | 难度:0.99
某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)

 
男职工
女职工
总计
每周平均上网时间不超过4个小时
 
 
 
每周平均上网时间超过4个小时
 
70
 
总计
 
 
300
 
(Ⅰ)应收集多少名女职工样本数据?
(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:.试估计该公司职工每周平均上网时间超过4小时的概率是多少?
(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”
当前题号:7 | 题型:解答题 | 难度:0.99
某地区工会利用“健步行” 开展健步走积分奖励活动.会员每天走5 千步可获积分30分(不足5千步不积分), 每多走2千步再积20分(不足2千步不积分).为了解会员的健步走情况,工会在某天从系统中随机抽取了 1000名会员,统计了当天他们的步数,并将样本数据分为九组,整理得到如图频率分布直方图:

(1)求当天这1000名会员中步数少于11千步的人数;
(2)从当天步数在的会员中按分层抽样的方式抽取6人,再从这6人中随机抽取2人,求这2人积分之和不少于200分的概率;
(3)写出该组数据的中位数(只写结果).
当前题号:8 | 题型:解答题 | 难度:0.99
在“魅力红谷滩”才艺展示评比中,参赛选手成绩的茎叶图和频率分布直方图都受到不同程度的损坏,可见部分如图所示.
(1)根据图中信息,将图乙中的频率分布直方图补充完整;
(2)根据频率分布直方图估计选手成绩的平均值(同一组数据用该区间的中点值作代表);
(3)从成绩在[80,100]的选手中任选2人进行PK,求至少有1 人成绩在[90,100]的概率.
当前题号:9 | 题型:解答题 | 难度:0.99