- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为检验寒假学生自主学习的效果,年级部对某班50名学生各科的检测成绩进行了统计,下面是政治成绩的频率分布直方图,其中成绩分组区间是:
,
,
,
,
,
.

(1)求图中的
值及政治成绩的中位数;
(2)从分数在
中选定6人记为
,
,…,
,从分数在
中选定3人,记为
,
,
,组成一个学习小组.现从这6人和3人中各选1人作为组长,求
被选中且
未被选中的概率.







(1)求图中的

(2)从分数在










某教育主管部门到一所中学检查高三年级学生的体质健康情况,从中抽取了
名学生的体质测试成绩,得到的频率分布直方图如图1所示,样本中前三组学生的原始成绩按性别分类所得的茎叶图如图2所示.

(Ⅰ)求
,
,
的值;
(Ⅱ)估计该校高三学生体质测试成绩的平均数
和中位数
;
(Ⅲ)若从成绩在
的学生中随机抽取两人重新进行测试,求至少有一名男生的概率.


(Ⅰ)求



(Ⅱ)估计该校高三学生体质测试成绩的平均数


(Ⅲ)若从成绩在

某商场在一天的促销活动中,对这天9时到14时的销售额进行统计,其频率分布直方图如图所示,已知11时至12时的销售额为20万元,则10时到11时的销售额为( )


A.![]() | B.![]() | C.![]() | D.![]() |
在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以
(斤)(其中
)表示米粉的需求量,
(元)表示利润.
(1)估计该天食堂利润不少于760元的概率;
(2)在直方图的需求量分组中,以区间中间值作为该区间的需求量,以需求量落入该区间的频率作为需求量在该区间的概率,求
的分布列和数学期望.



(1)估计该天食堂利润不少于760元的概率;
(2)在直方图的需求量分组中,以区间中间值作为该区间的需求量,以需求量落入该区间的频率作为需求量在该区间的概率,求


树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占
.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.

(I)求出
的值;
(II)求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(III)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.







(I)求出

(II)求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(III)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.
某学校高三有
名学生,按性别分层抽样从高三学生中抽取
名男生,
名女生期未某学科的考试成绩,得到如下所示男生成绩的频率分布直方图和女生成绩的茎叶图.

(1)试计算男生考试成绩的平均分
与女生考试成绩的中位数(每组数据取区间的中点值);
(2)根据频率分布直方图可以认为,男生这次考试的成绩服从正态分布
,试计算男生成绩落在区间
内的概率及全校考试成绩在
内的男生的人数(结果保留整数);
(3)若从抽取的
名学生中考试成绩优势(
分以上包括
分)的学生中再选取
名学生,作学习经验交流,记抽取的男生人数为
,求
的分布列与数学期望.
参考数据,若
,则
,
,
.





(1)试计算男生考试成绩的平均分

(2)根据频率分布直方图可以认为,男生这次考试的成绩服从正态分布



(3)若从抽取的






参考数据,若




根据以往的经验,某建筑工程施工期间的降水量
(单位:
)对工期的影响如下表:
根据某气象站的资料,某调查小组抄录了该工程施工地某月前
天的降水量的数据,绘制得到降水量的折线图,如下图所示.

(1)求这
天的平均降水量;
(2)根据降水量的折线图,分别估计该工程施工延误天数
的概率.


降水量![]() | ![]() | ![]() | ![]() | ![]() |
工期延误天数![]() | 0 | 1 | 3 | 6 |
根据某气象站的资料,某调查小组抄录了该工程施工地某月前


(1)求这

(2)根据降水量的折线图,分别估计该工程施工延误天数

下面给出的是某校高二(2)班50名学生某次测试数学成绩的频率分布折线图,根据图中所提供的信息,则下列结论正确的是


A.成绩是50分或100分的人数是0 | B.成绩为75分的人数为20 |
C.成绩为60分的频率为0.18 | D.成绩落在60—80分的人数为29 |
某工厂有120名工人,其年龄都在20~ 60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分成四组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备。现采用分层抽样法从全厂工人中抽取一个容量为20的样本参加新设备培训,培训结束后进行结业考试。已知各年龄段培训结业考试成绩优秀的人数如下表所示:


若随机从年龄段[20,30)和[40,50)的参加培训工人中各抽取1人,则这两人培训结业考试成绩恰有一人优秀的概率为___________.


若随机从年龄段[20,30)和[40,50)的参加培训工人中各抽取1人,则这两人培训结业考试成绩恰有一人优秀的概率为___________.