- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- + 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了调查中小学课外使用互联网的情况,教育部向华东、华北、华南和西部地区60所中小学发出问卷
份,
名学生参加了问卷调查,并根据所得数据画出样本的频率分布直方图(如图).
(1)要从这
名中小学中用分层抽样的方法抽取
名中小学生进一步调查,则在
(小时)时间段内应抽出的人数是多少?
(2)若希望
的中小学生每天使用互联网时间不少于
(小时),请估计
的值,并说明理由.


(1)要从这



(2)若希望




已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1 000条,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10次,并将记录获取的数据制作成如图所示的茎叶图.
(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;
(2)为了估计池塘中鱼的总质量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的质量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图是按上述分组方法得到的频率分布直方图的一部分.
①估计池塘中鱼的质量在3千克以上(含3千克)的条数;
②若第三组鱼的条数比第二组多7条、第四组鱼的条数比第三组多7条,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的质量的众数及池塘中鱼的总质量.

(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;
(2)为了估计池塘中鱼的总质量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的质量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图是按上述分组方法得到的频率分布直方图的一部分.
①估计池塘中鱼的质量在3千克以上(含3千克)的条数;
②若第三组鱼的条数比第二组多7条、第四组鱼的条数比第三组多7条,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的质量的众数及池塘中鱼的总质量.


某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间
内,其频率分布直方图如图所示.

(Ⅰ)直方图中的
_________;
(Ⅱ)在这些购物者中,消费金额在区间
内的购物者的人数为_________.


(Ⅰ)直方图中的

(Ⅱ)在这些购物者中,消费金额在区间

某地区工会利用 “健步行APP”开展健步走积分奖励活动.会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分).为了解会员的健步走情况,工会在某天从系统中随机抽取了1000名会员,统计了当天他们的步数,并将样本数据分为
,
,
,
,
,
,
,
,
九组,整理得到如下频率分布直方图:

(Ⅰ)求当天这1000名会员中步数少于11千步的人数;
(Ⅱ)从当天步数在
,
,
的会员中按分层抽样的方式抽取6人,再从这6人中随机抽取2人,求这2人积分之和不少于200分的概率;
(Ⅲ)写出该组数据的中位数(只写结果).










(Ⅰ)求当天这1000名会员中步数少于11千步的人数;
(Ⅱ)从当天步数在



(Ⅲ)写出该组数据的中位数(只写结果).
我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.
分 组 | 频 数 | 频 率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | | |
[90,100] | 14 | 0.28 |
合 计 | | 1.00 |
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.

如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是( )


A.0.9 | B.0.75 | C.0.8 | D.0.7 |
某学校研究性学习小组对该校高三学生视力情况进行调查,在高三全体
名学生中随机抽取了
名学生的体检表,并得到如图所示的频率分布直方图.
(Ⅰ)若直方图中后四组的频数成等差数列,计算高三全体学生视力在
以下的人数,并估计这
名学生视力的中位数(精确到
);
(Ⅱ)学习小组发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对高三全体成绩名次在前
名和后
名的学生进行了调查,部分数据如表1,根据表1及临界表2中的数据,能否在犯错误的概率不超过
的前提下认为视力与学习成绩有关系?

(参考公式:
,其中
)


(Ⅰ)若直方图中后四组的频数成等差数列,计算高三全体学生视力在



(Ⅱ)学习小组发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对高三全体成绩名次在前




年段名次 是否近视 | 前![]() | 后![]() |
近 视 | ![]() | |
![]() | | ![]() |
![]() ![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
(参考公式:


2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农
民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如
图2的不完整的条形统计图.

图1 图2
根据以上统计图来判断以下说法错误的是
民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如
图2的不完整的条形统计图.

图1 图2
根据以上统计图来判断以下说法错误的是
A.2013年农民工人均月收入的增长率是![]() |
B.2011年农民工人均月收入是![]() |
C.小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了” |
D.2009年到2013年这五年中2013年农民工人均月收入最高 |
某地区对某路段公路上行驶的汽车速度实施监控,从中抽取
辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在
以下的汽车有_____.



207年8月8日晚我国四川九赛沟县发生了7.0级地震,为了解与掌握一些基本的地震安全防护知识,某小学在9月份开学初对全校学生进行了为期一周的知识讲座,事后并进行了测试(满分100分),根据测试成绩评定为“合格”(60分以上包含60分)、“不合格”两个等级,同时对相应等级进行量化:“合格”定为10分,“不合格”定为5分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:

(1)求
的值;
(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈,现再从这10人中任选4人,记所选4人的量化总分为
,求
的分布列及数学期望
;
(3)设函数
(其中
表示
的方差)是评估安全教育方案成效的一种模拟函数.当
时,认定教育方案是有效的;否则认定教育方案应需调整,试以此函数为参考依据.在(2)的条件下,判断该校是否应调整安全教育方案?
等级 | 不合格 | 合格 | ||
得分 | ![]() | ![]() | ![]() | ![]() |
频数 | 6 | ![]() | 24 | ![]() |

(1)求

(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈,现再从这10人中任选4人,记所选4人的量化总分为



(3)设函数



