- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制频率分布直方图
- + 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随机抽取某校高一100名学生的期末考试英语成绩(他们的英语成绩都在80分
140分之间),将他们的英语成绩(单位:分)分成:
,
,
,
,
六组,得到如图所示的部分频率分布直方图,已知成绩处于
内与
内的频数之和等于成绩处于
内的频数,根据图中的信息,回答下列问题:

(1)求频率分布直方图中未画出的小矩形的面积之和;
(2)求成绩处于
内与
内的频率之差;
(3)用分层抽样的方法从成绩不低于120分的学生中选取一个容量为6的样本,将该样本看成一个总体,从中任选2人,求这2人中恰有一人成绩低于130分的概率.










(1)求频率分布直方图中未画出的小矩形的面积之和;
(2)求成绩处于


(3)用分层抽样的方法从成绩不低于120分的学生中选取一个容量为6的样本,将该样本看成一个总体,从中任选2人,求这2人中恰有一人成绩低于130分的概率.
一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为2:3.
(1)确定
,
,
,
的值,并补全频率分布直方图;

(2)①.试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;
②.若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
网购金额(单位:千元) | 频数 | 频率 | | 网购金额(单位:千元) | 频数 | 频率 |
[0,0.5) | 3 | 0.05 | | [1.5,2) | 15 | 0.25 |
[0.5,1) | ![]() | ![]() | | [2,2.5) | 18 | 0.30 |
[1,1.5) | 9 | 0.15 | | [2.5,3] | ![]() | ![]() |
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为2:3.
(1)确定





(2)①.试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;
②.若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
某中学为弘扬优良传统,展示80年来的办学成果,特举办“建校80周年教育成果展示月”活动。现在需要招募活动开幕式的志愿者,在众多候选人中选取100名志愿者,为了在志愿者中选拔出节目主持人,现按身高分组,得到的频率分布表如图所示

(1)请补充频率分布表中空白位置相应数据,再在答题纸上完成下列频率分布直方图;

(2)为选拔出主持人,决定在第3、4、5组中用分层抽样抽取6人上台,求第3、4、5组每组各抽取多少人?
(3)在(2)的前提下,主持人会在上台的6人中随机抽取2人表演诗歌朗诵,求第3组至少有一人被抽取的概率?

(1)请补充频率分布表中空白位置相应数据,再在答题纸上完成下列频率分布直方图;

(2)为选拔出主持人,决定在第3、4、5组中用分层抽样抽取6人上台,求第3、4、5组每组各抽取多少人?
(3)在(2)的前提下,主持人会在上台的6人中随机抽取2人表演诗歌朗诵,求第3组至少有一人被抽取的概率?
对某电子元件进行寿命追踪调查,情况如下.
(1)补全频率分布表,并画出频率分布直方图;
(2)从频率分布直方图求平均数.(只列出算式即可)

寿命(h) | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
个 数 | 20 | 30 | 80 | 40 | 30 |
(1)补全频率分布表,并画出频率分布直方图;
(2)从频率分布直方图求平均数.(只列出算式即可)


为了积极支持雄安新区建设,鼓励更多优秀大学生毕业后能到新区去,某985高校组织了一次模拟招聘活动,现从考试成绩中随机抽取100名学生的笔试成绩,并按成绩分成五组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示,(由于某种原因,部分直方图不够清晰),同时规定成绩不低于90分为“优秀”,成绩低于90分为“良好”,且只有成绩“优秀”的学生才能获得专题测试资格.

(1)若已知分数段
与
的人数比为2:1,请补全损坏的直方图;
(2)如果用分层抽样的方法从成绩为“优秀”和“良好”中选出10人,设甲是选出的成绩“优秀”中的一个,若从选出的成绩“优秀”的学生中再任选2人参加两项不同的专题测试(每人参加一种,二者互不相同),求甲被选中的概率.






(1)若已知分数段


(2)如果用分层抽样的方法从成绩为“优秀”和“良好”中选出10人,设甲是选出的成绩“优秀”中的一个,若从选出的成绩“优秀”的学生中再任选2人参加两项不同的专题测试(每人参加一种,二者互不相同),求甲被选中的概率.
20名学生某次数学考试成绩(单位:分)的频率分布直方图如图.

(1)求频率分布直方图中a的值;
(2)估计总体中成绩落在[50,60)中的学生人数;
(3)根据频率分布直方图估计20名学生数学考试成绩的众数,平均数;

(1)求频率分布直方图中a的值;
(2)估计总体中成绩落在[50,60)中的学生人数;
(3)根据频率分布直方图估计20名学生数学考试成绩的众数,平均数;
某医疗器械公司在全国共有
个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这
个销售点的年销量绘制出如下的频率分布直方图.

(1)完成年销售任务的销售点有多少个?
(2)若用分层抽样的方法从这
个销售点中抽取容量为
的样本,求该五组
,
,
,
,
,(单位:千台)中每组分别应抽取的销售点数量.
(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取
个,求这两个销售点不在同一组的概率.



(1)完成年销售任务的销售点有多少个?
(2)若用分层抽样的方法从这







(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取

某高中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是
,样本数据分组为
,
,
,
,
,
(Ⅰ)求直方图中
的值;
(Ⅱ)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1200名,请估计新生中有多少名学生可以申请住宿;
(Ⅲ)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于40分钟的人数记为
,求
的分布列和数学期望.(以直方图中频率作为概率)







(Ⅰ)求直方图中

(Ⅱ)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1200名,请估计新生中有多少名学生可以申请住宿;
(Ⅲ)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于40分钟的人数记为



某高校数学与统计学院为了对2018年录取的大一新生有针对性地进行教学.从大一新生中随机抽取40名,对他们在2018年高考的数学成绩进行调查,统计发现40名新生的数学分数
分布在
内.当
时,其频率
.
(Ⅰ)求
的值;
(Ⅱ)请在答题卡中画出这40名新生高考数学分数的频率分布直方图,并估计这40名新生的高考数学分数的平均数;

(Ⅲ)从成绩在100~120分的学生中,用分层抽样的方法从中抽取5名学生,再从这5名学生中随机选两人甲、乙,记甲、乙的成绩分别为
,求概率
.




(Ⅰ)求

(Ⅱ)请在答题卡中画出这40名新生高考数学分数的频率分布直方图,并估计这40名新生的高考数学分数的平均数;

(Ⅲ)从成绩在100~120分的学生中,用分层抽样的方法从中抽取5名学生,再从这5名学生中随机选两人甲、乙,记甲、乙的成绩分别为

