- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选课意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果如下.

图中,课程
为人文类课程,课程
为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组
”).
(Ⅰ)在“组
”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)某地举办自然科学营活动,学校要求:参加活动的学生只能是“组
”中选择
课
程或
课程的同学,并且这些同学以自愿报名缴费的方式参加活动. 选择
课程的学生中有
人参加科学营活动,每人需缴纳
元,选择
课程的学生中有
人参加该活动,每人需缴纳
元.记选择
课程和
课程的学生自愿报名人数的情况为
,参加活动的学生缴纳费用总和为
元.
①当
时,写出
的所有可能取值;
②若选择
课程的同学都参加科学营活动,求
元的概率.

图中,课程



(Ⅰ)在“组

(Ⅱ)某地举办自然科学营活动,学校要求:参加活动的学生只能是“组


程或











①当


②若选择


某校在“普及环保知识节”后,为了进一步增强环保意识,从本校学生中随机抽取了一批学生参加环保基础知识测试.经统计,这批学生测试的分数全部介于75至100之间.将数据分成以下
组:第1组
,第2组
,第3组
,第4组
,第5组
,得到如图所示的频率分布直方图.

(Ⅰ)求a的值;
(Ⅱ)现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生座谈,求每组抽取的学生人数;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计随机抽取学生所得测试分数的平均值在第几组(只需写出结论).







(Ⅰ)求a的值;
(Ⅱ)现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生座谈,求每组抽取的学生人数;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计随机抽取学生所得测试分数的平均值在第几组(只需写出结论).
某公司为了解该公司800名员工参加运动的情况,对公司员工半年来的运动时间进行统计得到如图所示的频率分布直方图,则运动时间超过100小时的员工有( )


A.360人 | B.480人 | C.600人 | D.240人 |
为了调查学生数学学习的质量情况,某校从高二年级学生(其中男生与女生的人数之比为9:11)中,采用分层抽样的方法抽取n名学生依期中考试的数学成绩进行统计.根据数学的分数取得了这n名同学的数据,按照以下区间分为八组:
①[30,45), ②[45,60),
③[60,75), ④[75,90),
⑤[90,105), ⑥[105,120),
⑦[120,135), ⑧[135,150)
得到频率分布直方图如图.已知抽取的学生中数学成绩少于60分的人数为5人.

(1)求n的值及频率分布直方图中第④组矩形条的高度;
(2)如果把“学生数学成绩不低于90分”作为是否达标的标准,对抽取的n名学生,完成下列2´2列联表:
.
据此资料,你是否认为“学生性别”与“数学成绩达标与否”有关?
(3)若从第①组和第②组的学生中随机抽取3人,求这3人中不含第①组学生的概率.
附1:“2´2列联表
”的卡方统计量公式:K2=
附2:卡方(K2)统计量的概率分布表:
①[30,45), ②[45,60),
③[60,75), ④[75,90),
⑤[90,105), ⑥[105,120),
⑦[120,135), ⑧[135,150)
得到频率分布直方图如图.已知抽取的学生中数学成绩少于60分的人数为5人.

(1)求n的值及频率分布直方图中第④组矩形条的高度;
(2)如果把“学生数学成绩不低于90分”作为是否达标的标准,对抽取的n名学生,完成下列2´2列联表:

据此资料,你是否认为“学生性别”与“数学成绩达标与否”有关?
(3)若从第①组和第②组的学生中随机抽取3人,求这3人中不含第①组学生的概率.
附1:“2´2列联表


附2:卡方(K2)统计量的概率分布表:

对某校高一年级学生参加社区服务次数进行统计,随机抽取
名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:

(1)求出表中
及图中
的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间
内的概率.


分组 | 频数 | 频率 |
![]() | 10 | 0.25 |
![]() | 25 | ![]() |
![]() | ![]() | ![]() |
![]() | 2 | 0.05 |
合计 | ![]() | 1 |

(1)求出表中


(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间

某商店会员活动日.
(Ⅰ)随机抽取50名会员对商场进行综合评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].

(1)求频率分布直方图中的值;
(2)估计会员对商场的评分不低于80的概率.
(Ⅱ)采取摸球兑奖的方式对会员进行返代金券活动,每位会员从一个装有5个标有面值的球(2个所标的面值为300元,其余3个均为100元)的袋中一次性随机摸出2个球,球上所标的面值之和为该会员所获的代金券金额.求某会员所获得奖励超过400元的概率.
(Ⅰ)随机抽取50名会员对商场进行综合评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].

(1)求频率分布直方图中的值;
(2)估计会员对商场的评分不低于80的概率.
(Ⅱ)采取摸球兑奖的方式对会员进行返代金券活动,每位会员从一个装有5个标有面值的球(2个所标的面值为300元,其余3个均为100元)的袋中一次性随机摸出2个球,球上所标的面值之和为该会员所获的代金券金额.求某会员所获得奖励超过400元的概率.
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表和频率分布直方图,回答下面问题:

(1)结合图表信息,补全频率分布直方图;
(2)对于参加这次竞赛的900名学生,估计成绩不低于76分的约有多少人.

(1)结合图表信息,补全频率分布直方图;
(2)对于参加这次竞赛的900名学生,估计成绩不低于76分的约有多少人.
对400个某种型号的电子元件进行寿命追踪调查,其频率分布表如下表:

(I)在下图中补齐频率分布直方图;
(II)估计元件寿命在500800h以内的概率.
寿命(h) | 频率 |
500600 | 0.10 |
600700 | 0.15 |
700800 | 0.40 |
800900 | 0.20 |
9001000 | 0.15 |
合计 | 1 |

(I)在下图中补齐频率分布直方图;
(II)估计元件寿命在500800h以内的概率.
为了解某单位员工的月工资水平,从该单位500位员工中随机抽取了50位进行调查,得到如下频数分布表和频率分布直方图:

(1)
试由上图估计该单位员工月平均工资;
(2)现用分层抽样的方法从月工资在
和
的两组所调查的男员工中随机选取5人,问各应抽取多少人?
(3)若从月工资在
和
两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率.
月工资 (单位:百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
男员工数 | 1 | 8 | 10 | 6 | 4 | 4 |
女员工数 | 4 | 2 | 5 | 4 | 1 | 1 |

(1)

(2)现用分层抽样的方法从月工资在


(3)若从月工资在


某次月考后,从所有考生中随机抽取50名考生的数学成绩进行统计,并画出频率分布直方图如图所示,则该次考试数学成绩的众数的估计值为


A.70 | B.![]() | C.75 | D.80 |