- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一个文艺比赛中,12名专业人士和12名观众代表各组成一个评委小组,给参赛选手打分,下面是两组评委对同一名选手的打分:
小组A 42 45 48 46 52 47 49 55 42 51 47 45
小组B 55 36 70 66 75 49 46 68 42 62 58 47
(1)选择一个可以度量每一组评委打分相似性的量,并对每组评委的打分计算度量值.
(2)你能据此判断小组A和小组B中哪一个更像是由专业人土组成的吗?
小组A 42 45 48 46 52 47 49 55 42 51 47 45
小组B 55 36 70 66 75 49 46 68 42 62 58 47
(1)选择一个可以度量每一组评委打分相似性的量,并对每组评委的打分计算度量值.
(2)你能据此判断小组A和小组B中哪一个更像是由专业人土组成的吗?
有一种鱼的身体吸收汞,一定量身体中汞的含量超过其体重的1.00ppm(即百万分之一)的鱼被人食用后,就会对人体产生危害.在30条鱼的样本中发现的汞含量(单位:ppm)如下:
0.07 0.24 0.95 0.98 1.02 0.98 1.37 1.40 0.39 1.02
1.44 1.58 0.54 1.08 0.61 0.72 1.20 1.14 1.62 1.68
1.85 1.20 0.81 0.82 0.84 1.29 1.26 2.10 0.91 1.31
(1)请用合适的统计图描述上述数据,并分析这30条鱼的汞含量的分布特点;
(2)求出上述样本数据的平均数和标准差;
(3)从实际情况看,许多鱼的汞含量超标的原因是这些鱼在出售之前没有被检测过你认为每批这种鱼的平均承含量都比1.00ppm大吗?
(4)在上述样本中,有多少条鱼的汞含量在以平均数为中心、2倍标准差的范围内?
0.07 0.24 0.95 0.98 1.02 0.98 1.37 1.40 0.39 1.02
1.44 1.58 0.54 1.08 0.61 0.72 1.20 1.14 1.62 1.68
1.85 1.20 0.81 0.82 0.84 1.29 1.26 2.10 0.91 1.31
(1)请用合适的统计图描述上述数据,并分析这30条鱼的汞含量的分布特点;
(2)求出上述样本数据的平均数和标准差;
(3)从实际情况看,许多鱼的汞含量超标的原因是这些鱼在出售之前没有被检测过你认为每批这种鱼的平均承含量都比1.00ppm大吗?
(4)在上述样本中,有多少条鱼的汞含量在以平均数为中心、2倍标准差的范围内?
为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.
频率分布表

请根据以上频率分布表和频率分布直方图,回答下列问题:
(1)求出a,b,c,d的值;
(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内.
频率分布表
组别 | 分组 | 频数 | 频率 |
1 | [50,60) | 9 | 0.18 |
2 | [60,70) | a | |
3 | [70,80) | 20 | 0.40 |
4 | [80,90) | | 0.08 |
5 | [90,100] | 2 | b |
| 合计 | | 1 |

请根据以上频率分布表和频率分布直方图,回答下列问题:
(1)求出a,b,c,d的值;
(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内.
某学校为了了解学生课外阅读情况,随机调查了50名学生,得到他们在每一天各自课外阅读所用时间的数据(其中A,B,C,D,E分别表示课外阅读时间为
,
,
,
,
),结果用条形统计图表示如图,根据条形统计图估计该校全体学生这一天平均每人的课外阅读时间为( )







A.![]() | B.![]() | C.![]() | D.![]() |
2018年北京市进行人口抽样调查,随机抽取了某区居民13289人,记录他们的年龄(单位:岁),将数据分成10组:
,
,
,…,
,并整理得到如下频率分布直方图:

(1)估计该区居民年龄的中位数(精确到0.1);
(2)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.





(1)估计该区居民年龄的中位数(精确到0.1);
(2)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.
对某电子元件进行寿命追踪调查,情况如下:
(1)求下表中的x,y;
(2)从频率分布直方图估计电子元件寿命的第80百分位数是多少.
寿命分组/h | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
个数 | 20 | 30 | 80 | 40 | 30 |
(1)求下表中的x,y;
寿命分组/h | 频数 | 频率 |
100~200 | 20 | 0.10 |
200~300 | 30 | x |
300~400 | 80 | 0.40 |
400~500 | 40 | 0.20 |
500~600 | 30 | y |
合计 | 200 | 1 |
(2)从频率分布直方图估计电子元件寿命的第80百分位数是多少.
已知某市2015年全年空气质量等级如表1所示.
表1
2016年5月和6月的空气质量指数如下:
5月 240 80 56 53 92 126 45 87 56 60
191 62 55 58 56 53 89 90 125 124
103 81 89 44 34 53 79 81 62 116
88
6月 63 92 110 122 102 116 81 163 158 76
33 102 65 53 38 55 52 76 99 127
120 80 108 33 35 73 82 90 146 95
选择合适的统计图描述数据,并回答下列问题:
(1)分析该市2016年6月的空气质量情况.
(2)比较该市2016年5月和6月的空气质量,哪个月的空气质量较好?
(3)比较该市2016年6月与该市2015年全年的空气质量,2016年6月的空气质量是否好于去年?
表1
空气质量等级(空气质量指数(AQI)) | 频数 | 频率 |
优(![]() | 83 | 22.8% |
良(![]() | 121 | 33.2% |
轻度污染(![]() | 68 | 18.6% |
中度污染(![]() | 49 | 13.4% |
重度污染(![]() | 30 | 8.2% |
严重污染(![]() | 14 | 3.8% |
合计 | 365 | 100% |
2016年5月和6月的空气质量指数如下:
5月 240 80 56 53 92 126 45 87 56 60
191 62 55 58 56 53 89 90 125 124
103 81 89 44 34 53 79 81 62 116
88
6月 63 92 110 122 102 116 81 163 158 76
33 102 65 53 38 55 52 76 99 127
120 80 108 33 35 73 82 90 146 95
选择合适的统计图描述数据,并回答下列问题:
(1)分析该市2016年6月的空气质量情况.
(2)比较该市2016年5月和6月的空气质量,哪个月的空气质量较好?
(3)比较该市2016年6月与该市2015年全年的空气质量,2016年6月的空气质量是否好于去年?