- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着金融市场的发展,越来越多人选择投资“黄金”作为理财的手段,下面将A市把黄金作为理财产品的投资人的年龄情况统计如下图所示.

(1)求把黄金作为理财产品的投资者的年龄的中位数;(结果用小数表示,小数点后保留两位有效数字)
(2)现按照分层抽样的方法从年龄在
和
的投资者中随机抽取5人,再从这5人中随机抽取3人进行投资调查,求恰有1人年龄在
的概率.

(1)求把黄金作为理财产品的投资者的年龄的中位数;(结果用小数表示,小数点后保留两位有效数字)
(2)现按照分层抽样的方法从年龄在



某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是( )


A.甲的极差是29 | B.甲的中位数是24 |
C.甲罚球命中率比乙高 | D.乙的众数是21 |
某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )


A.73.3,75,72 | B.72,75,73.3 |
C.75,72,73.3 | D.75,73.3,72 |
某中学随机抽取部分高一学生调查其每日自主安排学习的时间(单位:分钟),并将所得数据绘制成如图所示的频率分布直方图,其中自主安排学习时间的范围是
,样本数据分组为
,
,
,
,
.

(Ⅰ)求直方图中
的值;
(Ⅱ)从学校全体高一学生中任选
名学生,这
名学生中自主安排学习时间少于
分钟的人数记为
,求
的分布列和数学期望.(以直方图中的频率作为概率).







(Ⅰ)求直方图中

(Ⅱ)从学校全体高一学生中任选





一次选拔运动员,测得7名选手的身高(单位:
)分布茎叶图为
,记录的平均身高为
,有一名候选人的身高记录不清楚,其末位数记为
,那么
的值为( )





A.4 | B.3 | C.2 | D.1 |
某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g)作为质量指标值.由检测结果得到如下频率分布直方图.

(1)求图中
的值;
(2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间
和
内为合格品,重量在区间
内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20元.以抽检样本重量的频率分布作为该零件重量的概率分布.若这批零件共
件
,现有两种销售方案:方案一:不再检测其他零件,整批零件除对已检测到的不合格品进行回收处理,其余零件均按150元/件售出;方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150元/件售出,优质品按200元/件售出.仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.
分组 | 频数 | 频率 |
![]() | 8 | |
![]() | | |
![]() | | |
![]() | 16 | 0.16 |
![]() | 4 | 0.04 |
合计 | 100 | 1 |

(1)求图中

(2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间





某校从高一年级的一次月考成绩中随机抽取了
名学生的成绩(满分
分),这
名学生的成绩都在
内,按成绩分为
,
,
,
,
五组,得到如图所示的频率分布直方图.
(1)求图中的
值;
(2)假设同组中的每个数据都用该组区间的中点值代替,估计该校高一年级本次考试成绩的平均分;
(3)用分层抽样的方法从成绩在
内的学生中抽取
人,再从这
人中随机抽取
名学生进行调查,求月考成绩在
内至少有
名学生被抽到的概率.









(1)求图中的

(2)假设同组中的每个数据都用该组区间的中点值代替,估计该校高一年级本次考试成绩的平均分;
(3)用分层抽样的方法从成绩在







如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( )


A.12.5;12.5 | B.13;13 | C.13;12.5 | D.12.5;13 |