- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某区工商局、消费者协会在
月
号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取
名群众,按他们的年龄分组:第
组
,第
组
,第
组
,第
组
,第
组
,得到的频率分布直方图如图所示.

(Ⅰ)若电视台记者要从抽取的群众中选
人进行采访,求被采访人恰好在第
组或第
组的概率;
(Ⅱ)已知第
组群众中男性有
人,组织方要从第
组中随机抽取
名群众组成维权志愿者服务队,求至少有两名女性的概率.














(Ⅰ)若电视台记者要从抽取的群众中选



(Ⅱ)已知第




高三某班15名学生一次模拟考试成绩用茎叶图表示如图1,执行图2所示的程序框图,若输入的
分别为这15名学生的考试成绩,则输出的结果为( )



A.6 | B.7 | C.8 | D.9 |
某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:
,
,…,
后得到频率分布直方图(如下图所示),则分数在
内的人数是__________.





甲、乙两人练习罚球,每人练习6组,每组罚球20个,命中个数茎叶图如下:

(1)求甲命中个数的中位数和乙命中个数的众数;
(2)通过计算,比较甲乙两人的罚球水平.

(1)求甲命中个数的中位数和乙命中个数的众数;
(2)通过计算,比较甲乙两人的罚球水平.
2017年《诗词大会》火爆荧屏,某校为此举办了一场主题为“爱诗词、爱祖国”的诗词知识竞赛,从全校参赛的600名学生中抽出60人的成绩作为样本.对这60名学生的成绩进行统计,并按
,
分组,得到如图所示的频率分布直方图.
(Ⅰ)若规定60分以上(含60分)为及格,试估计全校及格人数;
(Ⅱ)若同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成绩;
(Ⅲ)估计参加这次知识竞赛的学生成绩的中位数(结果保留一位小数).


(Ⅰ)若规定60分以上(含60分)为及格,试估计全校及格人数;
(Ⅱ)若同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成绩;
(Ⅲ)估计参加这次知识竞赛的学生成绩的中位数(结果保留一位小数).

从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为 

“累积净化量(
)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为
时对颗粒物的累积净化量,以克表示.根据
《空气净化器》国家标准,对空气净化器的累计净化量(
)有如下等级划分:
为了了解一批空气净化器(共2000台)的质量,随机抽取
台机器作为样本进行估计,已知这
台机器的累积净化量都分布在区间
中.按照
均匀分组,其中累积净化量在
的所有数据有:
和
,并绘制了如下频率分布直方图:

(1)求
的值及频率分布直方图中的
值;
(2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为
的空气净化器有多少台?
(3)从累积净化量在
的样本中随机抽取2台,求恰好有1台等级为
的概率.




累积净化量(克) | ![]() | ![]() | ![]() | 12以上 |
等级 | ![]() | ![]() | ![]() | ![]() |
为了了解一批空气净化器(共2000台)的质量,随机抽取








(1)求


(2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为

(3)从累积净化量在


某校从参加高三化学得分训练的学生中随机抽出60名学生,将其化学成绩(均为整数)分成六段
、
、…、
后得到部分频率分布直方图(如图).
观察图形中的信息,回答下列问题:

(1)求分数在
内的频率,并补全频率分布直方图;
(2)据此估计本次考试的平均分;
(3)若从60名学生中随机抽取2人,抽到的学生成绩在
内记0分,在
内记1分,在
内记2分,用
表示抽取结束后的总记分,求
的分布列.



观察图形中的信息,回答下列问题:

(1)求分数在

(2)据此估计本次考试的平均分;
(3)若从60名学生中随机抽取2人,抽到的学生成绩在




