- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂对某产品的产量与单位成本的资料分析后有如下数据:
(1)求单位成本y与月产量x之间的线性回归方程.(其中已计算得:x1y1+x2y2+…+x6y6=1481,结果保留两位小数)
(2)当月产量为12千件时,单位成本是多少?
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
产量x千件 | 2 | 3 | 4 | 3 | 4 | 5 |
单位成本y元/件 | 73 | 72 | 71 | 73 | 69 | 68 |
(1)求单位成本y与月产量x之间的线性回归方程.(其中已计算得:x1y1+x2y2+…+x6y6=1481,结果保留两位小数)
(2)当月产量为12千件时,单位成本是多少?
为了解一大片经济林生长情况,随机测量其中的60株的底部周长(单位:Cm),将周长整理后画出的频率分布表和频率分布直方图如下:观察图形,回答下列问题:

(1)补充上面的频率分布表和频率分布直方图.
(2)79.5~89.5 这一组的频数、频率分别是多少?
(3)估计这次环保知识竞赛的及格率(60cm及以上为合格
组距 | 频数 | 频率 | |
![]() | 6 | 0.1 | |
![]() | | 0.15 | |
![]() | 9 | | |
![]() | 18 | | |
![]() | | 0.25 | |
![]() | 3 | 0.05 | |
合计 | | |

(1)补充上面的频率分布表和频率分布直方图.
(2)79.5~89.5 这一组的频数、频率分别是多少?
(3)估计这次环保知识竞赛的及格率(60cm及以上为合格
为考察两个变量x和y之间的线性相关,;甲、乙两同学各自独立地做了10次和15次试验,并且利用线性回归方法求得回归直线分别为
.已知两个人在试验中发现对变量x的观测数据的平均数都为s,对变量y的观测数据的平均数都为t,那么下列说法台正确的是

A.![]() |
B.![]() |
C.![]() |
D.![]() |
在抽查产品的尺寸过程中,将其尺寸分成若干组。
是其中的一组,抽查出的个体在该组上的频率为m,该组上的直方图的高为h,则
=()


A.hm | B.![]() | C.![]() | D.h+m |
某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.

(Ⅰ)根据频率分布直方图填写下面2×2列联表;
(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?
附:.

(Ⅰ)根据频率分布直方图填写下面2×2列联表;
(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?
| 甲班(A方式) | 乙班(B方式) | 总计 |
成绩优秀 | | | |
成绩不优秀 | | | |
总计 | | | |
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
“开门大吉”是中央电视台推出的娱乐节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.

(1) 完成下列2×2列联表(见答题纸);
(2)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)
(参考公式:
,
)

(1) 完成下列2×2列联表(见答题纸);
(2)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)
![]() | 0.10 | 0.05 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 |
(参考公式:


学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n且支出在
元的样本,其频率分布直方图如图所示,其中支出在
元的学生有30人,则n的值为( )




A.100 | B.1000 | C.90 | D.900 |
(2015秋•盐城校级月考)某篮球选手近五场比赛的上场时间分别为:9.7,9.9,10.1,10.2,10.1(单位:分钟),则这组数据的方差为 .
某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),...,[90,100]后得到如图所示的部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求分数在[70,80)内的频率,并补全这个频率分布直方图,统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用
表示抽取结束后的总记分,求
的分布列和数学期望.

(1)求分数在[70,80)内的频率,并补全这个频率分布直方图,统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用

