- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了比较两种肥料A、B对同类橘子树产量的影响(此处橘子树的产量是指每一棵橘子树的产量,单位是千克),试验人员分别从施用这两种肥料的橘子树中随机抽取了200棵,其中100棵橘子树施用了A种肥料,另100棵橘子树施用了B种肥料作为样本进行分析,其中样本橘子树产量的分组区间为[5,15),[15,25),[25,35),[35,45),[45,55),由此得到表1和图1的所示内容,其中表1是施用A种肥料后橘子树产量的频数分布表,图1是施用B种肥料后橘子树产量的频率分布直方图.


(Ⅰ)完成图2和表2,其中图2是施用A种肥料后橘子树产量的频率分布直方图,表2是施用B种肥料后橘子树产量的频数分布表,并比较施用A、B两种肥料对橘子树产量提高的影响那种更大,理由是什么?
表2:施用B种肥料后橘子树产量的频数分布表
(Ⅱ)把施用了B种肥料的橘子树中产量不低于45千克的橘子树记为甲类橘子树,产量小于15千克的橘子树记为乙类橘子树,现采用分层抽样方法从甲、乙两类橘子树中抽取4棵进行跟踪研究,若从抽得的4棵橘子树中随机抽取2棵进行跟踪研究结果的对比,记X为这两颗橘子树中甲类橘子树的个数,求X的分布列.


(Ⅰ)完成图2和表2,其中图2是施用A种肥料后橘子树产量的频率分布直方图,表2是施用B种肥料后橘子树产量的频数分布表,并比较施用A、B两种肥料对橘子树产量提高的影响那种更大,理由是什么?
表2:施用B种肥料后橘子树产量的频数分布表
橘子树产量的分组 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) |
频数 | | | | | |
(Ⅱ)把施用了B种肥料的橘子树中产量不低于45千克的橘子树记为甲类橘子树,产量小于15千克的橘子树记为乙类橘子树,现采用分层抽样方法从甲、乙两类橘子树中抽取4棵进行跟踪研究,若从抽得的4棵橘子树中随机抽取2棵进行跟踪研究结果的对比,记X为这两颗橘子树中甲类橘子树的个数,求X的分布列.
对某种花卉的开放花期追踪调查,调查情况如下:
则这种卉的平均花期为___天.
花期(天) | 11~13 | 14~16 | 17~19 | 20~22 |
个数 | 20 | 40 | 30 | 10 |
则这种卉的平均花期为___天.
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽样100名志原者的年龄情况如下表所示.

(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在

(Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为


已知样本7,10,14,8,7,12,11,10,8,10,13,10,8,11,8,9,12,9,13,20,那么这组数据落在8.5~11.5的频率为()
A.0.5 | B.0.4 | C.0.3 | D.0.2 |
随机抽取某中学甲乙两个班各
名同学,测量他们的身高(单位:
),获得身高数据的茎叶图(中间的数字表示身高的百位、十位,旁边的数字分别表示身高的个位数)如图所示

(I)根据茎叶图判断哪个班的平均身高较高;
(II)计算甲班的样本方差;
(III)现从乙班这
名同学中随机抽取两名身高不低于
的同学,求身高为
的同学被抽中的概率.



(I)根据茎叶图判断哪个班的平均身高较高;
(II)计算甲班的样本方差;
(III)现从乙班这



为了调查某中学高三学生的身高情况,在该中学高三学生中随机抽取了
名同学作为样本,测得他们的身高后,画出频率分布直方图如下:

(I)估计该校高三学生的平均身高;
(II)从身高在
(含
)以上的样本中随机抽取
人,记身高在
之间的人数为
,求
的分布列和数学期望.


(I)估计该校高三学生的平均身高;
(II)从身高在






某科研部门现有男技术员45人,女技术员15人,为研发某新产品的需要,科研部门按照分层抽样的方法组建了一个由四人组成的新产品研发小组.
(1)求每一个技术员被抽到的概率及该新产品研发小组中男、女技术员的人数;
(2)一年后研发小组决定选两名研发的技术员对该项研发产品进行检验,方法是先从研发小组中选一人进行检验,该技术员检验结束后,再从研发小组内剩下的三名技术员中选一人进行检验,若两名技术员检验得到的数据如下:
① 求先后被选出的两名技术员中恰有一名女技术员的概率;
② 请问哪位技术员检验更稳定?并说明理由.
(1)求每一个技术员被抽到的概率及该新产品研发小组中男、女技术员的人数;
(2)一年后研发小组决定选两名研发的技术员对该项研发产品进行检验,方法是先从研发小组中选一人进行检验,该技术员检验结束后,再从研发小组内剩下的三名技术员中选一人进行检验,若两名技术员检验得到的数据如下:
第一次被抽到进行检验的技术员 | 58 | 53 | 87 | 62 | 78 | 70 | 82 |
第二次被抽到进行检验的技术员 | 64 | 61 | 78 | 66 | 74 | 71 | 76 |
① 求先后被选出的两名技术员中恰有一名女技术员的概率;
② 请问哪位技术员检验更稳定?并说明理由.
已知A,B,C是三种不同型号的产品,这三种产品数量之比为2:3:5,现用分层抽样的方法从中抽出一个容量为n的样本进行检验,如果该样本中A种型号产品有8件,那么此样本的容量n是()
A.12 | B.16 | C.20 | D.40 |
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,一般情况下PM2.5的浓度越大,大气环境质量越差.右边的茎叶图表示的是成都市区甲乙两个监测站某10日内每天的PM2.5浓度读数(单位:
),则下列说法正确的是( )



A.这10日内甲、乙监测站读数的极差相等 |
B.这10日内甲、乙监测站读数的中位数中,乙的较大 |
C.这10日内乙监测站读数的众数与中位数相等 |
D.这10日内甲、乙监测站读数的平均数相等 |
为了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取得学生人数为_____
