- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂共有
名工人,已知这
名工人去年完成的产品数都在区间
(单位:万件)内,其中每年完成
万件及以上的工人为优秀员工,现将其分成
组,第
组、第
组、第
组、第
组、第
组对应的区间分别为
,
,
,
,
,并绘制出如图所示的频率分布直方图.

(1)求
的值,并求去年优秀员工人数;
(2)选取合适的抽样方法从这
名工人中抽取容量为
的样本,求这
组分别应抽取的人数;
(3)现从(2)中
人的样本中的优秀员工中随机选取
名传授经验,求选取的
名工人在同一组的概率.
















(1)求

(2)选取合适的抽样方法从这



(3)现从(2)中



2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生 450 人)中,采用分层抽样的方法从中抽取
名学生进行调查.
(1)已知抽取的
名学生中含女生45人,求
的值及抽取到的男生人数;
(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的
名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的
列联表. 请将列联表补充完整,并判断是否有 99%的把握认为选择科目与性别有关?说明你的理由;

(3)在抽取的选择“地理”的学生中按分层抽样再抽取6名,再从这6名学生中抽取2人了解学生对“地理”的选课意向情况,求2人中至少有1名男生的概率.

参考公式:
.

(1)已知抽取的


(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的



(3)在抽取的选择“地理”的学生中按分层抽样再抽取6名,再从这6名学生中抽取2人了解学生对“地理”的选课意向情况,求2人中至少有1名男生的概率.

参考公式:

某工厂生产
、
、
三种不同型号的产品,其中某月生产的产品数量之比依次为
,现用分层抽样的方法抽取一个容量为120的样本,已知
种型号产品抽取了45件,则
( )






A.1 | B.2 | C.3 | D.4 |
下列四个结论:
①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;
②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;
③线性相关系数
越大,两个变量的线性相关性越弱;反之,线性相关性越强;
④在回归方程
中,当解释变量
每增加一个单位时,预报变量
增加0.5个单位.
其中正确的结论是( )
①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;
②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;
③线性相关系数

④在回归方程



其中正确的结论是( )
A.①② | B.①④ |
C.②③ | D.②④ |
《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共同参与诗词知识比拼。“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髫小儿,人数按照年龄分组统计如下表:
(1)用分层抽样的方法从“百人团”中抽取
人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数;
(2)在(1)中抽出的
人中,任选
人参加一对一的对抗比赛,求这
人来自同一年龄组的概率。
分组(年龄) | ![]() | ![]() | ![]() |
频数(人) | ![]() | ![]() | ![]() |
(1)用分层抽样的方法从“百人团”中抽取

(2)在(1)中抽出的



我国古代数学名著《九章算术》中有如下问题:“今有北乡8758人,西乡有7236人,南乡有8356人,现要按人数多少从三个乡共征集487人,问从各乡征集多少人”.在上述问题中,需从南乡征集的人数大约是( )
A.112 | B.128 | C.145 | D.167 |
某学校高一年级
人,高二年级
人,高三年级
人,先采用分层抽样的方法从中抽取
名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为( )




A.![]() | B.![]() | C.![]() | D.![]() |
在第十五次全国国民阅读调查中,某地区调查组获得一个容量为
的样本,其中城镇居民
人,农村居民
人.在这些居民中,经常阅读的城镇居民
人,农村居民
人.
(1)填写下面列联表,并判断是否有
的把握认为,经常阅读与居民居住地有关?
(2)调查组从该样本的城镇居民中按分层抽样抽取出
人,参加一次阅读交流活动,若活动主办方从这
位居民中随机选取
人作交流发言,求被选中的
位居民都是经常阅读居民的概率.
附:
,其中
.





(1)填写下面列联表,并判断是否有

| 城镇居民 | 农村居民 | 合计 |
经常阅读 | ![]() | ![]() | |
不经常阅读 | | | |
合计 | | | ![]() |
(2)调查组从该样本的城镇居民中按分层抽样抽取出




附:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
某公司培训员工某项技能,培训有如下两种方式:
方式一:周一到周五每天培训1小时,周日测试
方式二:周六一天培训4小时,周日测试
公司有多个班组,每个班组60人,现任选两组
记为甲组、乙组
先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:
用方式一与方式二进行培训,分别估计员工受训的平均时间
精确到
,并据此判断哪种培训方式效率更高?
在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.
方式一:周一到周五每天培训1小时,周日测试
方式二:周六一天培训4小时,周日测试
公司有多个班组,每个班组60人,现任选两组


| 第一周 | 第二周 | 第三周 | 第四周 |
甲组 | 20 | 25 | 10 | 5 |
乙组 | 8 | 16 | 20 | 16 |



