- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2019年夏季来临,某品牌饮料举行夏季促销活动,瓶盖内部分别印有标识
“谢谢惠顾”、标识
“再来一瓶”以及标识
“品牌纪念币一枚”,每箱中印有
标识的饮料数量之比为3:1:2,若顾客购买了一箱(12瓶)该品牌饮料,则兑换“品牌纪念币”的数量为( )




A.2 | B.4 | C.6 | D.8 |
一支由学生组成的校乐团有男同学48人,女同学36人,若用分层抽样的方法从该乐团的全体同学中抽取21人参加某项活动,则抽取到的男同学人数为( )
A.10 | B.11 | C.12 | D.13 |
阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”他们的调查结果如下:

(1)完成如下
列联表,并判断是否有99%的把握认为,了解阿基米德与选择文理科有关?

(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(ⅰ)求抽取的文科生和理科生的人数;
(ⅱ)从10人的样本中随机抽取3人,用
表示这3人中文科生的人数,求
的分布列和数学期望.参考数据:

,
.

(1)完成如下


(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(ⅰ)求抽取的文科生和理科生的人数;
(ⅱ)从10人的样本中随机抽取3人,用





阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”他们的调查结果如下:

(1)完成如下
列联表,并判断是否有
的把握认为,了解阿基米德与选择文理科有关?

(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(ⅰ)求抽取的文科生和理科生的人数;
(ⅱ)从10人的样本中随机抽取两人,求两人都是文科生的概率.
参考数据:

,
.

(1)完成如下



(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(ⅰ)求抽取的文科生和理科生的人数;
(ⅱ)从10人的样本中随机抽取两人,求两人都是文科生的概率.
参考数据:



近年,国家逐步推行全新的高考制度.新高考不再分文理科,某省采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,采用分层抽样的方法从中抽取
名学生进行调查.
(1)已知抽取的
名学生中含男生55人,求
的值;
(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的
名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的
列联表. 请将列联表补充完整,并判断是否有 99%的把握认为选择科目与性别有关?说明你的理由;
(3)在抽取到的女生中按(2)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中抽取4人,设这4人中选择“地理”的人数为
,求
的分布列及期望.

附:
,


(1)已知抽取的


(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的


(3)在抽取到的女生中按(2)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中抽取4人,设这4人中选择“地理”的人数为



附:



过去大多数人采用储蓄的方式将钱储蓄起来,以保证自己生活的稳定,考虑到通货膨胀的压力,如果我们把所有的钱都用来储蓄,这并不是一种很好的方式,随着金融业的发展,普通人能够使用的投资理财工具也多了起来,为了研究某种理财工具的使用情况,现对
年龄段的人员进行了调查研究,将各年龄段人数分成
组:
,并整理得到频率分布直方图:

(1)求图中的
值;
(2)采用分层抽样的方法,从第二组、第三组、第四组中共抽取
人,则三个组中各抽取多少人?
(3)在(2)中抽取的
人中,随机抽取
人,则这
人都来自于第三组的概率是多少?




(1)求图中的

(2)采用分层抽样的方法,从第二组、第三组、第四组中共抽取

(3)在(2)中抽取的



某校有高一学生
名,其中男生数与女生数之比为9:7,为了解学生的视力情况,现要求按分层抽样抽取一个样本容量为
的样本,若样本中男生比女生多8人,则



A.960 | B.1000 | C.1920 | D.2000 |
“微信运动”是手机
推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:
(1)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?
(2)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为
,写出
的分布列并求出数学期望
.
参考公式:
,其中
.
参考数据:

| 运动达人 | 参与者 | 合计 |
男教师 | 60 | 20 | 80 |
女教师 | 40 | 20 | 60 |
合计 | 100 | 40 | 140 |
(1)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?
(2)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为



参考公式:


参考数据:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
为了了解学生学习的情况,某校采用分层抽样的方法从高一1200人、高二1000人、高三
人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为( )

A.20 | B.24 | C.30 | D.32 |
某公司生产
,
,
三种不同型号的轿车,产量之比依次为
,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为
的样本,若样本中
种型号的轿车比
种型号的轿车少8辆,则
( )








A.96 | B.72 | C.48 | D.36 |