- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了了解高一(1)班53名同学的牙齿健康状况,需从中抽取5名同学做医学检验,现已对53名同学编号为00,01,02,…,50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去,则选取的号码依次为____________.随机数表如下:
0154 3287 6595 4287 5346
7953 2586 5741 3369 8324
4597 7386 5244 3578 6241
0154 3287 6595 4287 5346
7953 2586 5741 3369 8324
4597 7386 5244 3578 6241
某单位有360名职工,现采用系统抽样方法,抽取20人做问卷调查,将360人按1,2,…,360随机编号,则抽取的20人中,编号落入区间
的人数为__________.

某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2400名学生中抽取30人进行调查.现将2400名学生随机地从1~2400编号,按编号顺序平均分成30组(1~80号,81~160号,…,2321~2400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码是( )
A.416 | B.432 | C.448 | D.464 |
《最强大脑》是江苏卫视引进德国节目《Super Brain》而推出的大型科学竞技真人秀节目,节目筹备组透露挑选选手的方式:不但要对空间感知、照相式记忆进行考核,而且要让选手经过名校最权威的脑力测试,
分以上才有机会入围,某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各
名,然后对这
名学生进行脑力测试,规定:分数不小于
分为“入围学生”,分数小于
分为“未入围学生”,已知男生入围
人,女生未入围
人,
(1)根据题意,填写下面的
列联表,并根据列联表判断是否有
以上的把握认为脑力测试后是否为“入围学生”与性别有关.
(2)用分层抽样的方法从“入围学生”中随机抽取
名学生.
(ⅰ)求这
名学生中女生的人数;
(ⅱ)若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),求这
名学生中女生测试分数的平均分的最小值.
附:
,其中







(1)根据题意,填写下面的


性别 | 入围人数 | 未入围人数 | 总计 |
男生 | 24 | | |
女生 | | 80 | |
总计 | | | |
(2)用分层抽样的方法从“入围学生”中随机抽取

(ⅰ)求这

(ⅱ)若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),求这

附:


![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某工厂甲,乙,丙三个车间生产同一种产品,数量分别为120件,80件,60件.现用分层抽样抽取一个容量为
的样本进行调查,其中从乙车间的产品中抽取了4件,则
______ .


总体由编号为
的
个个体组成,利用下面的随机数表选取
个个体,选取方法是从随机数表第
行的第
列和第
列数字开始由左到右依次选取两个数字,则选出来的第
个个体的编号为___________.








某地区有小学21所,中学14所,大学7所.现采用分层抽样的方法从这些学校中抽取6所学校,对学生进行视力检查.
(Ⅰ) 求应从小学、中学、大学中分别抽取的学校数目;
(Ⅱ) 若从抽取的6所学校中随即抽取2所学校作进一步数据分析:
①列出所有可能抽取的结果;
②求抽取的2所学校没有大学的概率.
(Ⅰ) 求应从小学、中学、大学中分别抽取的学校数目;
(Ⅱ) 若从抽取的6所学校中随即抽取2所学校作进一步数据分析:
①列出所有可能抽取的结果;
②求抽取的2所学校没有大学的概率.
某学校在学校内招募了
名男志愿者和
名女志愿者,将这
名志愿者的身高编成如茎叶图所示(单位:
),若身高在
以上(包括
)定义为“高个子”,身高在
以下(不包括
)定义为“非高个子”.

(Ⅰ)根据数据分别写出男、女两组身高的中位数;
(Ⅱ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则各抽几人?
(Ⅲ)在(Ⅱ)的基础上,从这
人中选
人,那么至少有一人是“高个子”的概率是多少?









(Ⅰ)根据数据分别写出男、女两组身高的中位数;
(Ⅱ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则各抽几人?
(Ⅲ)在(Ⅱ)的基础上,从这


某高级中学共有学生2000名,各年级男、女生人数如下表:
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)求
的值;
(2)现用分层抽样的方法在全校抽取48名学生,问应该在高三年级抽取多少名?
(3)已知
,
,求高三年级中女生比男生多的概率.
| 高一年级 | 高二年级 | 高三年级 |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)求

(2)现用分层抽样的方法在全校抽取48名学生,问应该在高三年级抽取多少名?
(3)已知


随着高考制度的改革,某省即将实施“语数外+3”新高考的方案,2019年秋季入学的高一新生将面临从物理(物)、化学(化)、生物(生)、政治(政)、历史(历)、地理(地)六科中任选三科(共20种选法)作为自己将来高考“语数外+3”新高考方案中的“3”某市为了顺利地迎接新高考改革,在某高中200名学生中进行了“学生模拟选科数据”调查,每个学生只能从表格中的20种课程组合中选择一种学习模拟选课数据统计如下表:
为了解学生成绩与学生模拟选课情况之问的关系,用分层抽样的方法从这200名学生中抽取40人的样本进行分析
(l)样本中选择组合20号“政历地”的有多少人?若以样本频率作为概率,求该高中学生不选物理学科的概率?
(Ⅱ)从样本中选择学习生物且学习政治的学生中随机抽取3人,求这3人中至少有一人还学习历史的概率?
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
组合学科 | 物化生 | 物化政 | 物化历 | 物化地 | 物生政 | 物生历 | 物生地 | 物政历 | 物政地 | 物历地 |
人数 | 20人 | 5人 | 10人 | 10人 | 5人 | 15人 | 10人 | 5人 | 0人 | 5人 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 合计 |
化生政 | 化生历 | 化生地 | 化政历 | 化政地 | 化历地 | 生政历 | 生政地 | 生历地 | 政历地 | |
5人 | … | … | … | … | … | 10人 | 5人 | … | 25人 | 200人 |
为了解学生成绩与学生模拟选课情况之问的关系,用分层抽样的方法从这200名学生中抽取40人的样本进行分析
(l)样本中选择组合20号“政历地”的有多少人?若以样本频率作为概率,求该高中学生不选物理学科的概率?
(Ⅱ)从样本中选择学习生物且学习政治的学生中随机抽取3人,求这3人中至少有一人还学习历史的概率?