- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 随机抽样
- 普查与抽样
- 总体与样本
- 系统抽样
- 分层抽样
- 三种抽样方法的比较
- 用样本估计总体
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一批热水器共有98台,其中甲厂生产的有56台,乙厂生产的有42台,用分层抽样从中抽取一个容量为14的样本,那么甲、乙两厂各抽取的热水器的台数是( )
A.9,5 | B.8,6 | C.10,4 | D.7,7 |
某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这 50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

(1)求频率分布图中
的值,并估计该企业的职工对该部门评分不低于80的概率;
(2)从评分在
的受访职工中,随机抽取2人,求此2人评分都在
的概率.


(1)求频率分布图中

(2)从评分在


某教师将寒假期间该校所有学生阅读小说的时间统计如下图所示,并统计了部分学生阅读小说的类型,得到的数据如下表所示:

(1)是否有99.9%的把握认为“性别”与“阅读小说的类型”有关?
(2)求学生阅读小说时间的众数和平均数(同一组数据用该组区间的中点值作代表);
(3)若按照分层抽样的方法从阅读时间在
、
的学生中随机抽取6人,再从这6人中随机挑选2人介绍选取小说类型的缘由,求所挑选的2人阅读时间都在
的概率.
附:
,
.

| 男生 | 女生 |
阅读武侠小说 | 80 | 30 |
阅读都市小说 | 20 | 70 |
(1)是否有99.9%的把握认为“性别”与“阅读小说的类型”有关?
(2)求学生阅读小说时间的众数和平均数(同一组数据用该组区间的中点值作代表);
(3)若按照分层抽样的方法从阅读时间在



附:


![]() | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 5.024 | 6.635 | 7.879 | 10.828 |
某电子商务平台的管理员随机抽取了1000位上网购物者,并对其年龄(在10岁到69岁之间)进行了调查,统计情况如下表所示.
已知
,
,
三个年龄段的上网购物的人数依次构成递减的等比数列.
(1)求
的值;
(2)若将年龄在
内的上网购物者定义为“消费主力军”,其他年龄段内的上网购物者定义为“消费潜力军”.现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,再从这5人中抽取2人,求这2人中至少有一人是消费潜力军的概率.
年龄 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 100 | 150 | ![]() | 200 | ![]() | 50 |
已知



(1)求

(2)若将年龄在

某精准扶贫帮扶单位,为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助精准扶贫户利用互联网电商渠道销售当地特产苹果.苹果单果直径不同单价不同,为了更好的销售,现从该精准扶贫户种植的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间[50,95]内(单位:
),统计的茎叶图如图所示:

(Ⅰ)按分层抽样的方法从单果直径落在[80,85),[85,90)的苹果中随机抽取6个,再从这6个苹果中随机抽取2个,求这两个苹果单果直径均在[85,90)内的概率;
(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.已知该精准扶贫户有20000个约5000千克苹果待出售,某电商提出两种收购方案:
方案
:所有苹果均以5.5元/千克收购;
方案
:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径 在[50,65)内按35元/箱收购,在[65,90)内按50元/箱收购,在[90,95]内按35元/箱收购.包装箱与分拣装箱工费为5元/箱.请你通过计算为该精准扶贫户推荐收益最好的方案.


(Ⅰ)按分层抽样的方法从单果直径落在[80,85),[85,90)的苹果中随机抽取6个,再从这6个苹果中随机抽取2个,求这两个苹果单果直径均在[85,90)内的概率;
(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.已知该精准扶贫户有20000个约5000千克苹果待出售,某电商提出两种收购方案:
方案

方案

某校进入高中数学竞赛复赛的学生中,高一年级有6人,高二年级有12人, 高三年级有24人,现采用分层抽样的方法从这些学生中抽取7人进行采访.
(1)求应从各年级分别抽取的人数;
(2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为
,高二学生记为
,高三学生记为
,
)
①列出所有可能的抽取结果;
②求抽取的2人均为高三年级学生的概率.
(1)求应从各年级分别抽取的人数;
(2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为




①列出所有可能的抽取结果;
②求抽取的2人均为高三年级学生的概率.
某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为 .
| 一年级 | 二年级 | 三年级 |
女生 | 373 | ![]() | ![]() |
男生 | 377 | 370 | ![]() |
国家统计局拟进行第四次经济普查,某调查机构从
个发达地区,
个欠发达地区,
个贫困地区中选取
个作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有
家企事业单位,
家个体经营户,普查情况如下表所示:
(1)写出选择
个国家综合试点地区采用的抽样方法;
(2)根据列联表判断是否有
的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;
(3)以频率作为概率,某普查小组从该小区随机选择
家企事业单位,
家个体经营户作为普查对象,入户登记顺利的对象数记为
,写出
的分布列,并求
的期望值.
附:参考公式:
,其中
参考数据:






普查对象类别 | 顺利 | 不顺利 | 合计 |
企事业单位 | 40 | 10 | 50 |
个体经营户 | 90 | 60 | 150 |
合计 | 130 | 70 | 200 |
(1)写出选择

(2)根据列联表判断是否有

(3)以频率作为概率,某普查小组从该小区随机选择





附:参考公式:


参考数据:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
某乡镇中学有初级职称教师100人,中级职称教师70人,高级职称教师30人,要从其中抽取20人进行体检,如果采用分层抽样的方法,则高级职称教师应该抽取的人数为______