- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为研究质量
(单位:克)对弹簧长度
(单位:厘米)的影响,对不同质量的6个物体进行测量,数据如表所示:
(1)作出散点图并求线性回归方程;
(2)求出
;
(3)进行残差分析.


![]() | 5 | 10 | 15 | 20 | 25 | 30 |
![]() | 7.25 | 8.12 | 8.95 | 9.90 | 10.9 | 11.8 |
(1)作出散点图并求线性回归方程;
(2)求出

(3)进行残差分析.
某电视厂家准备在元旦举行促销活动,现根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x(万元)和销售量y(万台)的数据如下:
(1)若用线性回归模型拟合y与x的关系,求出y关于x的线性回归方程;
(2)若用y=c+d
模型拟合y与x的关系,可得回归方程
=1.63+0.99
,经计算线性回归模型和该模型的R2分别约为0.75和0.88,请用R2说明选择哪个回归模型更好;
(3)已知利润z与x,y的关系为z=200y-x.根据(2)的结果,求当广告费x=20时,销售量及利润的预报值.
参考公式:回归直线
的斜率和截距的最小二乘估计分别为
=
=
,
.
参考数据:
≈2.24.
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
广告费支出x | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售量y | 1.9 | 3.2 | 4.0 | 4.4 | 5.2 | 5.3 | 5.4 |
(1)若用线性回归模型拟合y与x的关系,求出y关于x的线性回归方程;
(2)若用y=c+d



(3)已知利润z与x,y的关系为z=200y-x.根据(2)的结果,求当广告费x=20时,销售量及利润的预报值.
参考公式:回归直线





参考数据:

(山东省烟台市2018届适应性练习(二))某房产中介公司2017年9月1日正式开业,现对其每个月的二手房成交量进行统计,
表示开业第
个月的二手房成交量,得到统计表格如下:

(1)统计中常用相关系数
来衡量两个变量之间线性关系的强弱.统计学认为,对于变量
,如果
,那么相关性很强;如果
,那么相关性一般;如果
,那么相关性较弱.通过散点图初步分析可用线性回归模型拟合
与
的关系.计算
的相关系数
,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到0.01)
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
(计算结果精确到0.01),并预测该房产中介公司2018年6月份的二手房成交量(计算结果四舍五入取整数).
(3)该房产中介为增加业绩,决定针对二手房成交客户开展抽奖活动.若抽中“一等奖”获6千元奖金;抽中“二等奖”获3千元奖金;抽中“祝您平安”,则没有奖金.已知一次抽奖活动中获得“一等奖”的概率为
,获得“二等奖”的概率为
,现有甲、乙两个客户参与抽奖活动,假设他们是否中奖相互独立,求此二人所获奖金总额
(千元)的分布列及数学期望.
参考数据:
,
,
,
,
.
参考公式:



(1)统计中常用相关系数









(2)请根据上表提供的数据,用最小二乘法求出



(3)该房产中介为增加业绩,决定针对二手房成交客户开展抽奖活动.若抽中“一等奖”获6千元奖金;抽中“二等奖”获3千元奖金;抽中“祝您平安”,则没有奖金.已知一次抽奖活动中获得“一等奖”的概率为



参考数据:





参考公式:

有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中是相关关系的为___________.
已知两个随机变量x,y之间的相关关系如下表所示:
根据上述数据得到的回归方程为
=
x+
,则大致可以判断( )
x | -4 | -2 | 1 | 2 | 4 |
y | -5 | -3 | -1 | -0.5 | 1 |
根据上述数据得到的回归方程为



A. ![]() ![]() | B.![]() ![]() |
C. ![]() ![]() | D. ![]() ![]() |
在一段时间内,某种商品的价格x(元)和需求量y(件)之间的一组数据如下表所示:
求出y关于x的线性回归方程,并说明拟合效果的好坏.
(参考数据:
)
价格x/元 | 14 | 16 | 18 | 20 | 22 |
需求量y/件 | 56 | 50 | 43 | 41 | 37 |
求出y关于x的线性回归方程,并说明拟合效果的好坏.
(参考数据:

(2018届河北省石家庄高三教学质量检测(二))随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据:
(1)根据数据绘制的散点图能够看出可用线性回归模型拟合
与
的关系,请用相关系数
加以说明;(系数精确到
);
(2)建立
关于
的回归方程
(系数精确到
);如果该公司计划在9月份实现产品销量超6万件,预测至少需要投入促销费用多少万元(结果精确到
).
参考数据:
,
,
,
,
,其中
,
分别为第
个月的促销费用和产品销量,
.
参考公式:
(1)样本
的相关系数
.
(2)对于一组数据
,
,…,
,其回归方程
的斜率和截距的最小二乘估计分别为
,
.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用![]() | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量![]() | 1 | 1 | 2 | 3 | ![]() | 5 | 4 | ![]() |
(1)根据数据绘制的散点图能够看出可用线性回归模型拟合




(2)建立





参考数据:









参考公式:
(1)样本


(2)对于一组数据






下表是某工厂6月份到9月份电量(单位:万度)的一组数据:
由散点图可知,用电量
与月份
之间有较好的线性相关关系,其线性回归方程是
,则
等于
月份![]() | 6 | 7 | 8 | 9 |
用电量![]() | 6 | 5 | 3 | 2 |
由散点图可知,用电量




A.![]() | B.![]() |
C.![]() | D.![]() |
某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:
(1)画出散点图;
(2)求回归直线方程;
(3)试预测广告费支出为10万元时,销售额多大?
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.83 |
(1)画出散点图;
(2)求回归直线方程;
(3)试预测广告费支出为10万元时,销售额多大?
有一个食品商店为了调查气温对热饮销售的影响,经过调查得到关于卖出的热饮杯数与当天气温的数据如下表,绘出散点图如下.通过计算,可以得到对应的回归方程
=-2.352x+147.767,根据以上信息,判断下列结论中正确的是( )



摄氏温度 | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
热饮杯数 | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
A.气温与热饮的销售杯数之间成正相关 |
B.当天气温为2℃时,这天大约可以卖出143杯热饮 |
C.当天气温为10℃时,这天恰卖出124杯热饮 |
D.由于x=0时,![]() |