- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一种机器可以按各种不同速度运转,其生产物件中有一些含有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件个数.现观测得到(x,y)的4组值为(8,5),(12,8),(14,9),(16,11).
(1)假设y与x之间存在线性相关关系,求y与x之间的线性回归方程;
(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(结果精确到1)
(1)假设y与x之间存在线性相关关系,求y与x之间的线性回归方程;
(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(结果精确到1)
已知成线性相关关系的变量x,y之间的关系如下表所示,则回归直线一定过点( )
x | 0.1 | 0.2 | 0.3 | 0.5 |
y | 2.11 | 2.85 | 4.08 | 10.15 |
A.(0.1,2.11) | B.(0.2,2.85) |
C.(0.3,4.08) | D.(0.275,4.7975) |
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
(1)求出y关于x的线性回归方程
,并在坐标系中画出回归直线;
(2)试预测加工10个零件需要的时间.
(注:
,
=54)
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)求出y关于x的线性回归方程

(2)试预测加工10个零件需要的时间.
(注:

