- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了解学生升高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:

(Ⅰ)估计该校男生的人数;
(Ⅱ)估计该校学生身高在170~185cm之间的概率;
(Ⅲ)从样本中身高在165~180cm之间的女生中任选2人,求至少有1人身高在170~18cm之间的概率.
某班t名学生在2011年某次数学测试中,成绩全部介于80分与130分之间,将测试结果按如下方式分成五组,第一组[80,90);第二组[90,100)…第五组[120,130],下表是按上述分组方法得到的频率分布表:
(Ⅰ)求t及分布表中x,y,z的值;
(Ⅱ)设m,n是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件 “|m—n|≤10”的概率.
分组 | 频数 | 频率 |
[80,90) | x | 0.04 |
[90,100) | 9 | y |
[100,110) | z | 0.38 |
[110,120) | 17 | 0.34 |
[120,130] | 3 | 0.06 |
(Ⅰ)求t及分布表中x,y,z的值;
(Ⅱ)设m,n是从第一组或第五组中任意抽取的两名学生的数学测试成绩,求事件 “|m—n|≤10”的概率.
在参加市里主办的科技知识竞赛的学生中随机选取了40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;……第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中,

( I )求成绩在区间[80,90)内的学生人数;
(Ⅱ)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间[90,100] 内的概率.

( I )求成绩在区间[80,90)内的学生人数;
(Ⅱ)从成绩大于等于80分的学生中随机选2名学生,求至少有1名学生成绩在区间[90,100] 内的概率.
某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为( )
A.85,85,85 | B.87,85,86 |
C.87,85,85 | D.87,85,90 |
图2-1是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到12次的考试成绩依次记为
.图2-2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是 .


医生的专业能力参数
可有效衡量医生的综合能力,
越大,综合能力越强,并规定: 能力参数
不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力
的频率分布直方图:

(Ⅰ)求出这个样本的合格率、优秀率;
(Ⅱ)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.
①求这2名医生的能力参数
为同一组的概率;
②设这2名医生中能力参数
为优秀的人数为
,求随机变量
的分布列和期望.





(Ⅰ)求出这个样本的合格率、优秀率;
(Ⅱ)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.
①求这2名医生的能力参数

②设这2名医生中能力参数



2010年上海世博会举办时间为2010年5月1日--10月31日.此次世博会福建馆招募了60名志愿者,某高校有13人入选,其中5人为中英文讲解员,8人为迎宾礼仪,它们来自该校的5所学院(这5所学院编号为1、2、3、4、5号),人员分布如图所示.若从这13名入选者中随机抽出3人.

(1)求这3人所在学院的编号正好成等比数列的概率;
(2)求这3人中中英文讲解员人数的分布列及数学期望.

(1)求这3人所在学院的编号正好成等比数列的概率;
(2)求这3人中中英文讲解员人数的分布列及数学期望.
下表是x与y之间的一组数据,则y关于x的线性回归直线必过点( )
x | 0 | 1 | 2 | 3 |
y | 1 | 3 | 5 | 7 |
A.(2,2) | B.(1.5,2) | C.(1,2) | D.(1.5,4) |
下表是某厂1~4月份用水量(单位:百吨)的一组数据,
由其散点图知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是=-0.7x+a,则a=________.
月份x | 1 | 2 | 3 | 4 |
用水量y | 4.5 | 4 | 3 | 2.5 |
由其散点图知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是=-0.7x+a,则a=________.