- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
.有下列数据下列四个函数中,模拟效果最好的为( )
x | 1 | 2 | 3 |
y | 3 | 5.99 | 12.01 |
A.y=3×2x-1 | B.y=log2x |
C.y=3x | D.y=x2 |
有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用茎叶图表示这两组数据如下:

(1)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;
(2)若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.

(1)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;
(2)若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.
(本题满分14分)
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别
进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表
表2:女生身高频数分布表

(1) 求该校男生的人数并完成下面频率分布直方图;

(2)估计该校学生身高(单位:cm)在
的概率;
(3)在男生样本中,从身高(单位:cm)在
的男生中任选3人,设
表示所选3人中身高(单位:cm)在
的人数,求
的分布列和数学期望.
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别
进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表

表2:女生身高频数分布表

(1) 求该校男生的人数并完成下面频率分布直方图;

(2)估计该校学生身高(单位:cm)在

(3)在男生样本中,从身高(单位:cm)在




某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则
的值为 




为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,则分段的间隔k为 ( )
A.40 | B.30 |
C.20 | D.12 |
(本小题满分13分)从万州二中高二年级文科学生中随机抽取60名学生,将其月考的政治成绩(均为整数)分成六段:
,
,…,
后得到如下频率分布直方图.

(Ⅰ)求分数在
内的频率;
(Ⅱ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.




(Ⅰ)求分数在

(Ⅱ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.
某校为了解学生的学科学习兴趣,对初高中学生做了一个喜欢数学和喜欢语文的抽样调查,随机抽取了
名学生,相关的数据如下表所示:
(1) 、用分层抽样的方法从喜欢语文的学生中随机抽取
名,高中学生应该抽取几名?
(2) 、在(1)中抽取的
名学生中任取
名,求恰有
名初中学生的概率.

| 数学 | 语文 | 总计 |
初中 | ![]() | ![]() | ![]() |
高中 | ![]() | ![]() | ![]() |
总计 | ![]() | ![]() | ![]() |
(1) 、用分层抽样的方法从喜欢语文的学生中随机抽取

(2) 、在(1)中抽取的



某公司有员工150人,其中50岁以上的有15人,35---49岁的有45人,不到35岁的有90人.为了调查员工的身体健康状况,采用分层抽样方法从中抽取30名员工,则各年龄段人数分别为()
A.3、9、18 | B.5、9、16 |
C.3、10、17 | D.5、10、15 |