班主任为了对本班学生的考试成绩进行分析,决定从全班名男同学,名女同学中随机抽取一个容量为的样本进行分析.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)
(2)随机抽取位,他们的数学分数从小到大排序是:,物理分数从小到大排序是:.
①若规定分以上(包括分)为优秀,求这位同学中恰有位同学的数学和物理分数均为优秀的概率;
②若这位同学的数学、物理分数事实上对应如下表:

根据上表数据,由变量的相关系数可知物理成绩与数学成绩之间具有较强的线性相关关系,现求的线性回归方程(系数精确到).
参考公式:回归直线的方程是:,其中对应的回归估计值
参考数据:,,,.
当前题号:1 | 题型:解答题 | 难度:0.99
某高中文学社从高二文科学生中抽取男生60名,女生40名调查对100篇文学名篇的了解程度,统计结果如下:
阅读过的作品数(篇)






男生
3
9
18
15
6
9
女生
6
4
5
10
13
2
 
(1)试估计该校学生阅读文学名篇的平均数(同一组数据用该组区间中点值作代表),从计算结果看,阅读量与性别是否有关;
(2)阅读量不低于80篇的称为“非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否在犯错误的概率不超过的前提下认为对文学名篇“非常了解”与性别有关?(公式数据参考卷首)
当前题号:2 | 题型:解答题 | 难度:0.99
国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对开业前天参加抽奖活动的人数进行统计,表示开业第天参加抽奖活动的人数,得到统计表格如下:
















 
经过进一步统计分析,发现具有线性相关关系.
(1)根据上表提供的数据,用最小二乘法求出关于的线性回归方程
(2)若该分店此次抽奖活动自开业始,持续天,参加抽奖的每位顾客抽到一等奖(价值元奖品)的概率为,抽到二等奖(价值元奖品)的概率为,抽到三等奖(价值元奖品)的概率为.
试估计该分店在此次抽奖活动结束时送出多少元奖品?
参考公式:.
当前题号:3 | 题型:解答题 | 难度:0.99
国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对开业前天参加抽奖活动的人数进行统计,表示开业第天参加抽奖活动的人数,得到统计表格如下:
















 
经过进一步统计分析,发现具有线性相关关系.
(1)若从这天中随机抽取两天,求至少有天参加抽奖人数超过的概率;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计若该活动持续天,共有多少名顾客参加抽奖.
参考公式:.
当前题号:4 | 题型:解答题 | 难度:0.99
为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了位老年人,结果如下:



需要


不需要


 
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中。需要志愿帮助的老年人的比例?说明理由.
参考公式:












 
当前题号:5 | 题型:解答题 | 难度:0.99
某单位员工按年龄分为三组,其人数之比为,现用分层抽样的方法从总体中抽取一个容量为的样本,若组中甲、乙二人均被抽到的概率是,则该单位员工总数为______________.
当前题号:6 | 题型:填空题 | 难度:0.99
将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,若从中抽取一个容量为50的样本,按照系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第3个号码为__________.
当前题号:7 | 题型:填空题 | 难度:0.99
我市两所高中分别组织部分学生参加了“七五普法网络知识大赛”,现从这两所学校的参赛学生中分别随机抽取30名学生的成绩(百分制)作为样本,得到样本数据的茎叶图如图所示.

(Ⅰ)若乙校每位学生被抽取的概率为0.15,求乙校参赛学生总人数;
(Ⅱ)根据茎叶图,从平均水平与波动情况两个方面分析甲、乙两校参赛学生成绩(不要求计算);
(Ⅲ)从样本成绩低于60分的学生中随机抽取3人,求3人不在同一学校的概率.
当前题号:8 | 题型:解答题 | 难度:0.99
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个)
2
3
4
5
加工的时间y(小时)
2.5
3
4
4.5
 
(1)在给定的坐标系中画出表中数据的散点图;

(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
(注:)
当前题号:9 | 题型:解答题 | 难度:0.99
某工厂于2016年下半年对生产工艺进行了改造(每半年为一个生产周期),从2016年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示(如图).已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润20元,生产一件合格品可获利润10元,生产一件次品要亏损10元
(Ⅰ)求该企业2016年一年生产一件产品的利润为10的概率;
(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.

附:
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
 
K2=
当前题号:10 | 题型:解答题 | 难度:0.99