- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某单位
名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
(I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第
组的员工人数分别是多少?
(II)为了交流读书心得,现从上述
人中再随机抽取
人发言,设
人中年龄在
的人数为
,求
的数学期望;
(III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)
根据表中数据,我们能否有
的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?
附:
,其中






(I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第

(II)为了交流读书心得,现从上述






(III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)
| 喜欢阅读国学类 | 不喜欢阅读国学类 | 合计 |
男 | 14 | 4 | 18 |
女 | 8 | 14 | 22 |
合计 | 22 | 18 | 40 |

根据表中数据,我们能否有

附:


![]() | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
天气预报显示,在今后的三天中,每一天下雨的概率为40%,现用随机模拟的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0--9之间整数值的随机数,并制定用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
则这三天中恰有两天下雨的概率近似为( )
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
则这三天中恰有两天下雨的概率近似为( )
A.![]() | B.![]() | C.![]() | D.![]() |
在某次测试后,一位老师从本班48同学中随机抽取6位同学,他们的语文、历史成绩如表:
(Ⅰ)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;
(Ⅱ)用表中数据画出散点图易发现历史成绩
与语文成绩
具有较强的线性相关关系,求
与
的线性回归方程(系数精确到0.1).
参考公式:回归直线方程是
,其中
,
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 |
语文成绩![]() | 60 | 70 | 74 | 90 | 94 | 110 |
历史成绩![]() | 58 | 63 | 75 | 79 | 81 | 88 |
(Ⅰ)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;
(Ⅱ)用表中数据画出散点图易发现历史成绩




参考公式:回归直线方程是



近期中央电视台播出的《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:
(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示);

(2)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3、4、5组中用分层抽样抽取5名选手进入第二轮面试,求第3、4、5组每组各抽取多少名选手进入第二轮面试;
(3)在(2)的前提下,组委会决定在5名选手中随机抽取2名选手接受
考官进行面试,求:第4组至少有一名选手被考官
面试的概率.
组号 | 分组 | 频数 | 频率 |
第1组 | ![]() | | ![]() |
第2组 | ![]() | ① | |
第3组 | ![]() | 20 | ② |
第4组 | ![]() | 20 | ![]() |
第5组 | ![]() | 10 | ![]() |
合计 | | 100 | ![]() |
(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示);

(2)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3、4、5组中用分层抽样抽取5名选手进入第二轮面试,求第3、4、5组每组各抽取多少名选手进入第二轮面试;
(3)在(2)的前提下,组委会决定在5名选手中随机抽取2名选手接受


为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95.
(1)若规定85分(包括85分)以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:
①用变量
与
与
的相关系数说明物理与数学、化学与数学的相关程度;
②求
与
与
的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.
参考公式:相关系数
,
回归直线方程是:
,其中
,
参考数据:
,
,
,
.
(1)若规定85分(包括85分)以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数![]() | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数![]() | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化学分数![]() | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用变量



②求



参考公式:相关系数

回归直线方程是:


参考数据:




某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组
,第二组
,…,第五组
,如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)根据频率分布直方图,估计这50名学生百米测试成绩的中位数和平均数(精确到0.1).
(Ⅱ)若从第一、五组中随机取出三名学生成绩,设取自第一组的个数为
,求
的分布列,期望及方差.



(Ⅰ)根据频率分布直方图,估计这50名学生百米测试成绩的中位数和平均数(精确到0.1).
(Ⅱ)若从第一、五组中随机取出三名学生成绩,设取自第一组的个数为



共享单车的出现方便了人们的出行,深受市民的喜爱.为调查某校大学生对共享单车的使用情况,从该校8000名学生随机抽取了100位同学进行调查,得到这100名同学每周使用共享单车的时间(单位:小时)频率分布直方图.

(1)已知该校大一学生有2400人,求抽取的100名学生中大一学生人数;
(2)根据频率分布直方图求该校大学生每周使用共享单车的平均时间.
(3)
从抽取的100个样本中,用分层抽样的方法抽取使用共享单车时间超过6小时同学5人,再从这5人中任选2人,求这2人使用共享单车时间都不超过8小时的概率.

(1)已知该校大一学生有2400人,求抽取的100名学生中大一学生人数;
(2)根据频率分布直方图求该校大学生每周使用共享单车的平均时间.
(3)

某中学为了解高中入学新生的身高情况,从高一年级学生中按分层抽样共抽取了50名学生的身高数据,分组统计后得到了这50名学生身高的频数分布表:

(Ⅰ)在答题卡上作出这50名学生身高的频率分布直方图;
(Ⅱ)估计这50名学生身高的方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)现从身高在
这6名学生中随机抽取3名,求至少抽到1名女生的概率.

(Ⅰ)在答题卡上作出这50名学生身高的频率分布直方图;
(Ⅱ)估计这50名学生身高的方差(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)现从身高在

已知某口袋中有3个白球和
个黑球(
),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是
.若
,则
= ( )





A.![]() | B.1 | C.![]() | D.2 |