- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个班级中进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如下图,记成绩不低于70分者为“成绩优良”.

(1)分别计算甲、乙两班20个样本中,化学分数前十的平均分,并大致判断哪种教学方式的教学效果更佳;
(2)由以上统计数据填写下面
列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?

附:参考公式:
,其中
.
临界值表:

(1)分别计算甲、乙两班20个样本中,化学分数前十的平均分,并大致判断哪种教学方式的教学效果更佳;
(2)由以上统计数据填写下面


附:参考公式:


临界值表:
![]() | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
某市为评选“全国卫生城市”,从200名志愿者中随机抽取40名志愿者参加街道卫生监督活动,经过统计这些志愿者的年龄介于25岁和55岁之间,为方便安排任务,将所有志愿者按年龄从小到大分成六组,依次为
,如图是按照上述分组方法得到的频率分布直方图的一部分,已知第四组
的人数为4人.

(1)求第五组的频率并估计200名志愿者中年龄在40岁以上(含40岁)的人数;
(2)若从年龄位于第四组和第六组的志愿者中随机抽取两名,记他们的年龄分别为
,事件
,求
.



(1)求第五组的频率并估计200名志愿者中年龄在40岁以上(含40岁)的人数;
(2)若从年龄位于第四组和第六组的志愿者中随机抽取两名,记他们的年龄分别为



某篮球运动员在最近5场比赛中所得分数分别为12,
,8,15,23,其中
,若该运动员在这5场比赛中得分的中位数为12,则得分的平均数不可能为( )


A.![]() | B.![]() | C.![]() | D.14 |
一企业从某生产线上随机抽取
件产品,测量这些产品的某项技术指标值
,得到的频率分布直方图如图.

(1)估计该技术指标值
平均数
;
(2)在直方图的技术指标值分组中,以
落入各区间的频率作为
取该区间值的频率,若
,则产品不合格,现该企业每天从该生产线上随机抽取
件产品检测,记不合格产品的个数为
,求
的数学期望
.



(1)估计该技术指标值


(2)在直方图的技术指标值分组中,以







某市为了鼓励市民节约用水,实行“阶梯式”水价,将该市每户居民的月用水量划分为三档:月用水量不超过4吨的部分按2元/吨收费,超过4吨但不超过8吨的部分按4元/吨收费,超过8吨的部分按8元/吨收费.

(1)求居民月用水量费用
(单位:元)关于月用电量
(单位:吨)的函数解析式;
(2)为了了解居民的用水情况,通过抽样,获得今年3月份100户居民每户的用水量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年3月份用水费用不超过16元的占60%,求
的值;
(3)若地区居民用水量平均值超过6吨,则说明该地区居民用水没有节约意识在满足(2)的条件下,请你估计
市居民用水是否有节约意识(同一组中的数据用该组区间的中点值作代表).

(1)求居民月用水量费用


(2)为了了解居民的用水情况,通过抽样,获得今年3月份100户居民每户的用水量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年3月份用水费用不超过16元的占60%,求

(3)若地区居民用水量平均值超过6吨,则说明该地区居民用水没有节约意识在满足(2)的条件下,请你估计

为了丰富退休生活,老王坚持每天健步走,并用计步器记录每天健步走的步数.他从某月中随机抽取20天的健步走步数(老王每天健步走的步数都在
之间,单位:千步),绘制出频率分布直方图(不完整)如图所示.

(1)完成频率分布直方图,并估计该月老王每天健步走的平均步数(每组数据可用区间中点值代替;
(2)某健康组织对健步走步数的评价标准如下表:
现从这20天中评价级别是“及格”或“良好”的天数里随机抽取2天,求这2天的健步走结果属于同一评价级别的概率.


(1)完成频率分布直方图,并估计该月老王每天健步走的平均步数(每组数据可用区间中点值代替;
(2)某健康组织对健步走步数的评价标准如下表:
每天步数分组(千步) | ![]() | ![]() | ![]() |
评价级别 | 及格 | 良好 | 优秀 |
现从这20天中评价级别是“及格”或“良好”的天数里随机抽取2天,求这2天的健步走结果属于同一评价级别的概率.
为了解某公司员工的年收入和年支出的关系,随机调查了5名员工,得到如下统计数据表:

根据上表可得回归本线方程
,其中
,
,据此估计,该公司一名员工年收入为15万元时支出为( )

根据上表可得回归本线方程



A.9.05万元 | B.9.25万元 | C.9.75万元 | D.10.25万元 |
某部门有8位员工,其中6位员工的月工资分别为8200,8300,8500,9100,9500,9600(单位:元),另两位员工的月工资数据不清楚,但两人的月工资和为17000元,则这8位员工月工资的中位数可能的最大值为__________ 元.
2017 年省内某事业单位面向社会公开招骋工作人员,为保证公平竞争,报名者需要参加笔试和面试两部分,且要求笔试成绩必须大于或等于
分的才有资格参加面试,
分以下(不含
分)则被淘汰,现有
名竞骋者参加笔试,参加笔试的成绩按区间
分段,其频率分布直方图如图所示(频率分布直方图有污损),但是知道参加面试的人数为
,且笔试成绩在
的人数为
.

(1)根据频率分布直方图,估算竞骋者参加笔试的平均成绩;
(2)若在面试过程中每人最多有
次选题答题的机会,累计答对
题或答错
题, 答对
题者方可参加复赛,已知面试者甲答对每一个问题的概率都相同,并且相互之间没有影响,若他连续三次答题中答对一次的概率为
,求面试者甲答题个数
的分布列及数学期望.









(1)根据频率分布直方图,估算竞骋者参加笔试的平均成绩;
(2)若在面试过程中每人最多有






某大学餐饮中心为了了解新生的饮食习惯,利用简单随机抽样的方法在全校一年级学生中进行了抽样调查,调查结果如下表所示:
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)根据(1)的结论,你能否提出更好的调查方法来了解该校大学新生的饮食习惯,说明理由.
| 喜欢甜品 | 不喜欢甜品 | 合计 |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)根据(1)的结论,你能否提出更好的调查方法来了解该校大学新生的饮食习惯,说明理由.