- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 统计
- 随机抽样
- 用样本估计总体
- 变量间的相关关系
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某品牌汽车4S店,对该品牌旗下的A型、B型、C型汽车进行维修保养,汽车4S店记录了100辆该品牌三种类型汽车的维修情况,整理得下表:
假设该店采用分层抽样的方法从上述维修的100辆该品牌三种类型汽车中随机取10辆进行问卷回访.
(1)求A型、B型、C型各车型汽车抽取的数目;
(2)维修结束后这100辆汽车的司机采用“100分制”打分的方式表示对4S店的满意度,按照大于等于80为优秀,小于80为合格,得到如下列联表:
问能否在犯错误概率不超过0.01的前提下认为司机对4S店满意度与性别有关系?请说明原因.
(参考公式:
)
附表:
车型 | A型 | B型 | C型 |
频数 | 20 | 40 | 40 |
假设该店采用分层抽样的方法从上述维修的100辆该品牌三种类型汽车中随机取10辆进行问卷回访.
(1)求A型、B型、C型各车型汽车抽取的数目;
(2)维修结束后这100辆汽车的司机采用“100分制”打分的方式表示对4S店的满意度,按照大于等于80为优秀,小于80为合格,得到如下列联表:
| 优秀 | 合格 | 合计 |
男司机 | 10 | 38 | 48 |
女司机 | 25 | 27 | 52 |
合计 | 35 | 65 | 100 |
问能否在犯错误概率不超过0.01的前提下认为司机对4S店满意度与性别有关系?请说明原因.
(参考公式:

附表:
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 6.635 | 10.828 |
某高校调查了320名学生每周的自习时间(单位:小时),制成了下图所示的频率分布直方图,其中自习时间的范围是
,样本数据分组为
,
,
,
,
.根据直方图,这320名学生中每周的自习时间不足22.5小时的人数是( )








A.68 | B.72 | C.76 | D.80 |
若一个样本容量为
的样本的平均数为
,方差为
.现样本中又加入一个新数据
,此时样本容量为
,平均数为
,方差为
,则 








A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
某产品的广告费用x与销售额y的统计数据如上表根据上表可得回归方程
中的
为9.4,据此模型预报广告费用为6万元时销售额为().




A.63.6万元 | B.65.5万元 | C.67.7万元 | D.72.0万元 |
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].

(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.

(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.

下表是某城市在2019年1月份至10月份各月最低温与最高温(℃)的数据表,已知该城市的各月最低温与最高温具有相关关系,根据该表,则下列结论错误的是( )
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
最高温 | 5 | 9 | 9 | 11 | 17 | 24 | 27 | 30 | 31 | 21 |
最低温 | ![]() | ![]() | 1 | ![]() | 7 | 17 | 19 | 23 | 25 | 10 |
A.最低温与最高温为正相关 |
B.每月最低温与最高温的平均值在前8个月逐月增加 |
C.月温差(最高温减最低温)的最大值出现在1月 |
D.1至4月温差(最高温减最低温)相对于7至10月,波动性更大 |
某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
该公司注册的会员中没有消费超过5次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据
如下:
假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为
元,求
大于40的概率.
消费次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收费比率 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
该公司注册的会员中没有消费超过5次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据
如下:
消费次数 | 1次 | 2次 | 3次 | 4次 | 5次 |
人数 | 60 | 20 | 10 | 5 | 5 |
假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为


某校高二(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高二(1)班全体女生的人数;
(2)由频率分布直方图估计该班女生此次数学测试成绩的众数.


(1)求高二(1)班全体女生的人数;
(2)由频率分布直方图估计该班女生此次数学测试成绩的众数.
某商场近 5 个月的销售额和利润额如表所示:

(1)画出散点图,观察散点图,说明两个变量有怎样的相关关系;
(2) 求出利润额
关于销售额
的回归直线方程;
(3) 当销售额为4千万元时,利用(2)的结论估计该商场的利润额(百万元).
,
,

(1)画出散点图,观察散点图,说明两个变量有怎样的相关关系;
(2) 求出利润额


(3) 当销售额为4千万元时,利用(2)的结论估计该商场的利润额(百万元).


为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段
,
,
,
,
,
,到如图所示的频率分布直方图.

(1)求图中
的值及样本的中位数与众数;
(2)若从竞赛成绩在
与
两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于
分为事件
,求事件
发生的概率.







(1)求图中

(2)若从竞赛成绩在




