- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某产品的广告费用
与销售额
的统计数据如下表,根据下表可得回归方程
中的
.据此模型预报广告费用为
万元时销售额为( )





广告费用![]() | 4 | 2 | 3 | 5 |
销售额![]() | 49 | 26 | 39 | 58 |
A.![]() | B.![]() | C.![]() | D.![]() |
自2017年2月底,90多所自主招生试点高校将陆续出台2017年自主招生简章,某校高三年级选取了在期中考试中成绩优异的100名学生作为调查对象,对是否准备参加2017年的自主招生考试进行了问卷调查,其中“准备参加”“不准备参加”和“待定”的人数如表:
(1)在所有参加调查的同学中,在三种类型中用分层抽样的方法抽取20人进行座谈交流,则在“准备参加”“不准备参加”和“待定”的同学中应各抽取多少人?
(2)在“准备参加”的同学中用分层抽样方法抽取6人,从这6人中任意抽取2人,求至少有一名女生的概率.
| 准备参加 | 不准备参加 | 待定 |
男生 | 30 | 6 | 15 |
女生 | 15 | 9 | 25 |
(1)在所有参加调查的同学中,在三种类型中用分层抽样的方法抽取20人进行座谈交流,则在“准备参加”“不准备参加”和“待定”的同学中应各抽取多少人?
(2)在“准备参加”的同学中用分层抽样方法抽取6人,从这6人中任意抽取2人,求至少有一名女生的概率.
2017年“十一”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(
)分成六段:
,
,
,
,
,
,后得到如图的频率分布直方图.

(1)求这40辆小型车辆车速的众数和中位数的估计值;
(2)若从车速在
的车辆中任抽取2辆,求车速在
的车辆恰有一辆的概率.








(1)求这40辆小型车辆车速的众数和中位数的估计值;
(2)若从车速在


已知变量
,
之间的线性回归方程为
,且变量
,
之间的一组相关数据如下表所示,则下列说法错误的是( )





![]() | 6 | 8 | 10 | 12 |
![]() | 6 | ![]() | 3 | 2 |
A.可以预测,当![]() ![]() | B.![]() |
C.变量![]() ![]() | D.该回归直线必过点![]() |
在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成
,
,
,
,
5组,绘制成如图所示的频率分布直方图.

(1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);
(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在
的概率.






(1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);
(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在

为培养学生的综合素养,某校在高二年级开设了A,B,C,D四门选修课,并规定每位学生必须从这四门课中选修一门,则甲、乙、丙3名同学所选课程互不相同的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |