- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在
、
、
三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有_________(填具体数字)



《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座阁楼到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取两个灯球,则至少有一个灯球是大灯下缀4个小灯的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
总体由编号01,,02,…,19,20的20个个体组成。利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为
7816 | 6572 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
A.08 | B.07 | C.02 | D.01 |
为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下表:
现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为
.

(1)求
列联表中的数据
的值;
(2)在图中绘制发病率的条形统计图,并判断疫苗是否有效?
(3)在出错概率不超过
的条件下能否认为疫苗有效?
附:
.
| 未发病 | 发病 | 合计 |
未注射疫苗 | 40 | ![]() | ![]() |
注射疫苗 | 60 | ![]() | ![]() |
合计 | 100 | 100 | 200 |
现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为


(1)求


(2)在图中绘制发病率的条形统计图,并判断疫苗是否有效?
(3)在出错概率不超过

附:

![]() | 0.05 | 0.01 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.828 |
某超市从
年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取
个,并按
、
、
、
、
分组,得到频率分布直方图如图,假设甲、乙两种酸奶独立销售且日销售量相互独立.

(1)写出频率分布直方图甲中的
的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为
、
,试比较
与
的大小;(只需写出结论)
(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于
箱且另一个不高于
箱的概率;
(3)设
表示在未来
天内甲种酸奶的日销售量不高于
箱的天数,以日留住量落入各组的频率为概率,求
的分布列和数学期望.








(1)写出频率分布直方图甲中的





(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于


(3)设




某商场举行双12有奖促销活动,顾客购买168元的商品后即可抽奖,抽奖方法是:从装有2个红球
和1个白球
的甲箱与装有2个红球
和1个白球
的乙箱中,各随机摸出1个球,这些球除颜色,标号外都一样.若摸出的2个球颜色相同则中奖,否则不中奖.
(1)用球的标号列出所有可能的摸出结果;
(2)小明根据经验认为:摸到同色球一般来说更为难得,所以猜测中奖的概率小于不中奖的概率,你认为小明的猜想正确吗?请说明理由.




(1)用球的标号列出所有可能的摸出结果;
(2)小明根据经验认为:摸到同色球一般来说更为难得,所以猜测中奖的概率小于不中奖的概率,你认为小明的猜想正确吗?请说明理由.
某个年级有男生390人,女生210人,用分层抽样的方法从该年级全体学生中抽取一个容量为20的样本,则此样本中男生人数为____________.
在一次期末数学测试中,唐老师任教班级学生的考试得分情况如表所示:
(1)根据上述表格,试估计唐老师所任教班级的学生在本次期末数学测试的平均成绩;
(2)现从成绩在
中按照分数段,采取分层抽样的方法随机抽取5人,再在这5人中随机抽取2人作小题得分分析,求恰有1人的成绩在
上的概率.
分数区间 | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 2 | 8 | 32 | 38 | 20 |
(1)根据上述表格,试估计唐老师所任教班级的学生在本次期末数学测试的平均成绩;
(2)现从成绩在


某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于
分为优秀,
分以下为非优秀.统计成绩后,得到如下的
列联表.根据列联表的数据判断有多少的把握认为“成绩与班级有关系”( )
临界值表:
参考公式:
.



| 优秀 | 非优秀 | 合计 |
甲班 | ![]() | ![]() | ![]() |
乙班 | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
临界值表:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:

A.![]() | B.![]() | C.![]() | D.![]() |