- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)
某员工参加
项技能测试(技能测试项目的顺序固定),假设该员工在每一项技能测试中获得优秀的概率均为0.9,且不同技能测试是否获得优秀相互独立.该员工所在公司规定:三项均获得优秀则奖励
千元,有
项获得优秀奖励
千元,一项获得优秀奖励
千元,没有项目获得优秀则没有奖励.记
为该员工通过技能测试获得的奖励金(单位:元).
(Ⅰ)求该员工通过技能测试可能获得奖励金
的分布列;
(Ⅱ)求该员工通过技能测试可能获得的奖励金
的均值.
某员工参加






(Ⅰ)求该员工通过技能测试可能获得奖励金

(Ⅱ)求该员工通过技能测试可能获得的奖励金

某大学毕业生响应国家号召,到某村参加村委会主任应聘考核.考核依次分为笔试、面试.试用共三轮进行,规定只有通过前一轮考核才能进入下一轮考核,否则将被淘汰,三轮考核都通过才能被正式录用.设该大学毕业生通过三轮考核的概率分别为
,且各轮考核通过与否相互独立.
(Ⅰ)求该大学毕业生未进入第三轮考核的概率;
(Ⅱ)设该大学毕业生在应聘考核中考核次数为
,求
的数学期望和方差.

(Ⅰ)求该大学毕业生未进入第三轮考核的概率;
(Ⅱ)设该大学毕业生在应聘考核中考核次数为


高三第一学期期末四校联考数学第I卷中共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准规定:“每题只选一项,答对得5分,不答或答错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余选择题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜,试求出该考生:
(1)得40分的概率
(2)得多少分的可能性最大?
(3)所得分数
的数学期望
(1)得40分的概率
(2)得多少分的可能性最大?
(3)所得分数

某地决定新建A,B,C三类工程,A,B,C三类工程所含项目的个数分别占总项目数的
(总项目数足够多),现有3名工人独立地从中任选一个项目参与建设.
(Ⅰ)求他们选择的项目所属工程类别相同的概率;
(Ⅱ)记ξ为3人中选择的项目属于B类工程或C类工程的人数,求ξ的分布列及数学期望.

(Ⅰ)求他们选择的项目所属工程类别相同的概率;
(Ⅱ)记ξ为3人中选择的项目属于B类工程或C类工程的人数,求ξ的分布列及数学期望.
为了预防春季流感,市防疫部门提供了编号为1,2,3,4的四种疫苗供市民选择注射,每个人均能从中任选一个编号的疫苗接种,现有甲,乙,丙三人接种疫苗.
(I )求三人注射的疫苗编号互不相同的概率;
(II)设三人中选择的疫苗编号最大数为
,求
的分布列及数学期望.
(I )求三人注射的疫苗编号互不相同的概率;
(II)设三人中选择的疫苗编号最大数为


一项试验有两套方案,每套方案试验成功的概率都是
,试验不成功的概率都是
甲随机地从两套方案中选取一套进行这项试验,共试验了3次,每次实验相互独立,且要从两套方案中等可能地选择一套.
(1)求3次试验都选择了同一套方案且都试验成功的概率;
(2)记3次试验中,都选择了第一套方案并试难成功的次数为
,求
的分布列和期望
.


(1)求3次试验都选择了同一套方案且都试验成功的概率;
(2)记3次试验中,都选择了第一套方案并试难成功的次数为



某班主任对全班50名学生进行了作业量多少的调查,数据如下表:
根据表中数据得到
5.059,因为p(K
≥5.024)=0.025,
则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( )
| 认为作业多 | 认为作业不多 | 总数 |
喜欢玩电脑游戏 | 18 | 9 | 27 |
不喜欢玩电脑游戏 | 8 | 15 | 23 |
总数 | 26 | 24 | 50 |
根据表中数据得到


则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( )
A.97.5% | B.95% | C.90% | D.无充分根据 |
为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本.
(1)根据所给样本数据完成下面2×2列联表;
(2)请问能有多大把握认为药物有效?
(1)根据所给样本数据完成下面2×2列联表;
(2)请问能有多大把握认为药物有效?
| 不得禽流感 | 得禽流感 | 总计 |
服药 | | | |
不服药 | | | |
总计 | | | |