- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
假设一种机器在一个工作日内发生故障的概率为
,若一周5个工作日内无故障,则可获得利润10万元;仅有一个工作日发生故障可获得利润5万元; 仅有两个工作日发生故障不获利也不亏损;有三个或三个以上工作日发生故障就要亏损2万元.求:
(1)一周5个工作日内恰有两个工作日发生故障的概率(保留两位有效数字);
(2)一周5个工作日内利润的期望.

(1)一周5个工作日内恰有两个工作日发生故障的概率(保留两位有效数字);
(2)一周5个工作日内利润的期望.
桌面上有三颗均匀的骰子(6个面上分别标有数字1,2,3,4,5,6),重复下面的操作,直到桌面上没有骰子:将骰子全部抛掷,然后去掉那些朝上点数为奇数的骰子;记操作三次之内(含三次)去掉的骰子的颗数为X.
(Ⅰ)求
;
(Ⅱ)求X的分布列及期望
.
(Ⅰ)求

(Ⅱ)求X的分布列及期望

甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛胜者得3
分,负者得0分,没有平局,在每一场比赛中,甲胜乙的概率为
,甲胜丙的概率为
,乙胜丙的概率为
(1)求甲获第一名且丙获第二名的概率:
(2)设在该次比赛中,甲得分为ξ,求ξ的分布列和数学期望。
分,负者得0分,没有平局,在每一场比赛中,甲胜乙的概率为



(1)求甲获第一名且丙获第二名的概率:
(2)设在该次比赛中,甲得分为ξ,求ξ的分布列和数学期望。
甲、乙两名射手各进行一次射击,射中环数
、
的分布列分别为:
(I)确定
、
的值,并求两人各进行一次射击,都射中
环的概率;
(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中
环,则射击结束,否则继续射击,但最多不超过
轮,求结束时射击轮次数
的分布列及期望,并求结束时射击轮次超过
次的概率.


![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
(I)确定



(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中




某军事院校招生要经过考试和体检两个过程,在考试通过后才有体检的机会,两项都合格则被录取.若甲、乙、丙三名考生能通过考试的概率分别为0.4,0.5,0.8,体检合格的概率分别为0.5,0.4,0.25,每名考生是否被录取相互之间没有影响.
(1)求恰有一人通过考试的概率;
(2)设被录取的人数为
求
的分布列和数学期望.
(1)求恰有一人通过考试的概率;
(2)设被录取的人数为


某班拟从两名同学中选一人参加学校知识竞赛,现设计一个预选方案:选手从五道题中一次性随机抽取三道进行回答,已知甲五道题中只会三道,乙每道题答对的概率都是3/5,且每道题答对与否互不影响.
(1) 分别求出甲乙两人答对题数的概率分布;
(2) 你认为派谁参加比赛更合适.
(1) 分别求出甲乙两人答对题数的概率分布;
(2) 你认为派谁参加比赛更合适.
某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润
(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.
若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为
元.
、
的值;
(2)从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.
(单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.
若从这批产品中随机抽取出的1件产品的平均利润(即数学期望)为

表1
等级 | 一等品 | 二等品 | 三等品 | 次品 |
表2
等级 | 一等品 | 二等品 | 三等品 | 次品 |
利润 |
(1)求


(2)从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.
小张参加了清华大学、上海交大、浙江大学三个学校的自主招生考试,各学校是否通过相互独立,其通过的概率分别为
、
、
(允许小张同时通过多个学校)
(1)小张没有通过任何一所学校的概率;
(2)设小张通过的学校个数为ξ,求ξ的分布列和它的数学期望.



(1)小张没有通过任何一所学校的概率;
(2)设小张通过的学校个数为ξ,求ξ的分布列和它的数学期望.