- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):
以各组数据的中间值代表这组数据的平均值
,将频率视为概率.
(1)根据以往经验,可以认为实心球投掷距离
近似服从正态分布
,其中
近似为样本平均值,
近似为样本方差
,若规定:
时,测试成绩为“良好”,请估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比;
(2)现在从实心球投掷距离在
,
之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,在被抽取的3人中,记实心球投掷距离在
内的人数为
,求
的概率分布及数学期望.
附:若
服从
,则
,
.
分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 22 | 40 | 20 | 8 |
以各组数据的中间值代表这组数据的平均值

(1)根据以往经验,可以认为实心球投掷距离






(2)现在从实心球投掷距离在





附:若




甲、乙、丙三人分别参加三种类型的公务员考试,合格的概率分别是
、
、
,则三人中恰有两人合格的概率和三人中至少有一人合格的概率分别是( )



A.![]() | B.![]() | C.![]() | D.![]() |
一个人随机的将编号为1,2,3,4的四个小球放入编 号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为
,则
的期望
= ▲ .




某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知学生小张只选甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数f(x)=x2+ξx为R上的偶函数”为事件A,求事件A的概率;
(Ⅲ)求ξ的分布列和数学期望.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数f(x)=x2+ξx为R上的偶函数”为事件A,求事件A的概率;
(Ⅲ)求ξ的分布列和数学期望.
一个口装中有编号为1、2、3、4、5的五个大小形状完全一样的小球,现从袋中同时摸出3个小球,用随机变量
表示摸出的3个球中的最大号码数,则随机变量
的数学期望


