- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )
A.若![]() ![]() |
B.从独立性检验可知有![]() ![]() |
C.若从统计量中求出有![]() ![]() |
D.以上三种说法都不正确 |
某学校在学期结束,为了解家长对学校工作的满意度,对两个班的100位家长进行满意度调查,调查结果如下:
(1)根据表格判断是否有
的把握认为家长的满意程度与所在班级有关系?
(2)用分层抽样的方法从非常满意的家长中抽取5人进行问卷调查,并在这5人中随机选出2人进行座谈,求这2人都来自同一班级的概率?
附:

| 非常满意 | 满意 | 合计 |
A | 30 | 15 | 45 |
B | 45 | 10 | 55 |
合计 | 75 | 25 | 100 |
(1)根据表格判断是否有

(2)用分层抽样的方法从非常满意的家长中抽取5人进行问卷调查,并在这5人中随机选出2人进行座谈,求这2人都来自同一班级的概率?
附:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |

微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中
的人使用微信,其中每天使用微信时间少于一小时的有60人,其余的员工每天使用微信时间不少于一小时,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中
是青年人.若规定:每天使用微信时间不少于一小时为经常使用微信,那么经常使用微信的员工中
都是青年人.
(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,完成
列联表:
(2)由列联表中所得数据判断,能否在犯错误的概率不超过
的前提下认为“经常使用微信与年龄有关”?




(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,完成

| 青年人 | 中年人 | 合计 |
经常使用微信 | | | |
不经常使用微信 | | | |
合计 | | | |
(2)由列联表中所得数据判断,能否在犯错误的概率不超过

![]() | 0.010 | 0.001 |
![]() | 6.635 | 10.828 |

一种室内种植的珍贵草药的株高
(单位:
)与一定范围内的温度
(单位:
)有关,现收集了该种草药的13组观测数据,得到如下的散点图,现根据散点图利用
或
建立
关于
的回归方程,令
,
,得到如下数据,且
与
(
)的相关系数分别为
,且
.

(1)用相关系数说明哪种模型建立
与
的回归方程更合适;
(2)根据(1)的结果及表中数据,建立
关于
的回归方程;
(3)已知这种草药的利润
与
,
的关系为
,当
为何值时,利润
的预报值最大.
附:参考公式和数据:对于一组数据
(
),其回归直线
的斜率和截距的最小二乘估计分别为
,
,相关系数
,
















![]() | ![]() | ![]() | ![]() |
10.15 | 109.94 | 3.04 | 0.16 |
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
(1)用相关系数说明哪种模型建立


(2)根据(1)的结果及表中数据,建立


(3)已知这种草药的利润






附:参考公式和数据:对于一组数据







对于分类变量
与
的随机变量
的观测值
,下列说法正确的是




A.![]() ![]() ![]() |
B.![]() ![]() ![]() |
C.![]() ![]() ![]() |
D.![]() ![]() ![]() |