- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设盒子中装有6个红球,4个白球,2个黑球,且规定:取出一个红球得
分,取出一个白球得
分,取出一个黑球得
分,其中
,
,
都为正整数.
(1)当
,
,
时,从该盒子中依次任取(有放回,且每球取到的机会均等)2个球,记随机变量
为取出此2球所得分数之和,求
的分布列;
(2)当
时,从该盒子中任取(每球取到的机会均等)1个球,记随机变量
为取出此球所得分数,若
,
,求
和
.






(1)当





(2)当






某市场研究人员为了了解产业园引进的甲公司前期的经营状况,采集相应数据,对该公司2017年连续六个月的利润进行了统计,并绘制了相应的折线图,如图所示:

(1)折线图可以看出,可用线性回归模型拟合月利润
(单位:百万元)与月份代码
之间的关系,求
关于
的线性回归方程,并预测该公司2018年1月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有采购成本分别为10万元
包和12万元
包的
、
两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,不同类型的新型材料损坏的时间各不相同,已知生产新型材料的企业乙对
、
两种型号各100件新型材料进行过科学模拟测试,得到两种新型材料使用寿命频数统计如表:
经甲公司测算,平均每包新型材料每月可以带来5万元收入,不考虑除采购成本之外的其他成本,假设每包新型材料的使用寿命都是整数月,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?
参考数据:
,
.
参考公式:回归直线方程为
,其中
.

(1)折线图可以看出,可用线性回归模型拟合月利润




(2)甲公司新研制了一款产品,需要采购一批新型材料,现有采购成本分别为10万元






使用寿命 材料类型 | 1个月 | 2个月 | 3个月 | 4个月 | 总计 |
![]() | 20 | 35 | 35 | 10 | 100 |
![]() | 10 | 30 | 40 | 20 | 100 |
经甲公司测算,平均每包新型材料每月可以带来5万元收入,不考虑除采购成本之外的其他成本,假设每包新型材料的使用寿命都是整数月,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?
参考数据:


参考公式:回归直线方程为


2022年北京冬季奥运会即第24届冬季奥林匹克运动会,将在2022年2月4至2月20日在北京和张家口联合举行.某研究机构为了解大学生对冰壶运动的兴趣,随机从某大学学生中抽取了120人进行调查,经统计男生与女生的人数之比为11:13,男生中有30人表示对冰壶运动有兴趣,女生中有15人表示对冰壶运动没有兴趣.
(1)完成2×2列联表,并回答能否有99%的把握认为“对冰壶是否有兴趣与性别有关”?
(2)若将频率视为概率,现再从该校全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰壶有兴趣的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望和方差.
附:参考公式
,其中n=a+b+c+d.
临界值表:
(1)完成2×2列联表,并回答能否有99%的把握认为“对冰壶是否有兴趣与性别有关”?
| 有兴趣 | 没有兴趣 | 合计 |
男 | 30 | | |
女 | | 15 | |
合计 | | | 120 |
(2)若将频率视为概率,现再从该校全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰壶有兴趣的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望和方差.
附:参考公式

临界值表:
P(K2≥K0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
K0 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
某届奥运会上,中国队以26金18银26铜的成绩列金牌榜第三、奖牌榜第二.某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了60人,具体的调查结果如下表:
(1)在高三年级全体学生中随机抽取1名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班和二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为
,求随机变量
的分布列及数学期望.
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 6 | 10 | 13 | 11 | 9 | 11 |
满意人数 | 5 | 9 | 10 | 6 | 7 | 7 |
(1)在高三年级全体学生中随机抽取1名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班和二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为


某人某天的工作是:驾车从
地出发,到
两地办事,最后返回
地,
三地之间各路段行驶时间及当天降水概率如表:
若在某路段遇到降水,则在该路段行驶的时间需延长1小时,现有如下两个方案:
方案甲:上午从
地出发到
地办事,然后到达
地,下午在
地办事后返回
地;
方案乙:上午从
地出发到
地办事,下午从
地出发到达
地,办事后返回
地.
(1)设此人8点从
地出发,在各地办事及午餐的累积时间为2小时.且采用方案甲,求他当日18点或18点之前能返回
地的概率;
(2)甲、乙两个方案中,哪个方案有利于办完事后能更早返回
地?




路段 | 正常行驶所需时间(小时) | 上午降水概率 | 下午降水概率 |
![]() | 2 | 0.3 | 0.6 |
![]() | 2 | 0.2 | 0.7 |
![]() | 3 | 0.3 | 0.9 |
若在某路段遇到降水,则在该路段行驶的时间需延长1小时,现有如下两个方案:
方案甲:上午从





方案乙:上午从





(1)设此人8点从


(2)甲、乙两个方案中,哪个方案有利于办完事后能更早返回

某学校研究性学习小组对该校高二学生视力情况进行调查,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)在(1)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为
,求
的分布列和数学期望.
附:
年级名次 是否近视 | 1~50 | 951~1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)在(1)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为


![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:

《基础教育课程改革纲要(试行)》将“具有良好的心理素质”列入新课程的培养目标.为加强心理健康教育工作的开展,不断提高学生的心理素质,九江市某校高二年级开设了《心理健康》选修课,学分为2分.学校根据学生平时上课表现给出“合格”与“不合格”两种评价,获得“合格”评价的学生给予50分的平时分,获得“不合格”评价的学生给予30分的平时分,另外还将进行一次测验.学生将以“平时分×40%+测验分×80%”作为“最终得分”,“最终得分”不少于60分者获得学分.
该校高二(1)班选修《心理健康》课的学生的平时分及测验分结果如下:
(1)根据表中数据完成如下2×2列联表,并分析是否有95%的把握认为这些学生“测验分是否达到60分”与“平时分”有关联?
(2)用样本估计总体,若从所有选修《心理健康》课的学生中随机抽取5人,设获得学分人数为
,求
的期望.
附:
,其中
该校高二(1)班选修《心理健康》课的学生的平时分及测验分结果如下:
测验分 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
平时分50分人数 | 0 | 1 | 1 | 3 | 4 | 4 | 2 |
平时分30分人数 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
(1)根据表中数据完成如下2×2列联表,并分析是否有95%的把握认为这些学生“测验分是否达到60分”与“平时分”有关联?
选修人数 | 测验分 达到60分 | 测验分 未达到60分 | 合计 |
平时分50分 | | | |
平时分30分 | | | |
合计 | | | |
(2)用样本估计总体,若从所有选修《心理健康》课的学生中随机抽取5人,设获得学分人数为


附:


![]() | 0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
2019年12月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为
,某位患者在隔离之前,每天有
位密切接触者,其中被感染的人数为
,假设每位密切接触者不再接触其他患者.
(1)求一天内被感染人数为
的概率
与
、
的关系式和
的数学期望;
(2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有2位密切接触者,从某一名患者被感染,按第1天算起,第
天新增患者的数学期望记为
.
(i)求数列
的通项公式,并证明数列
为等比数列;
(ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率
,当
取最大值时,计算此时
所对应的
值和此时
对应的
值,根据计算结果说明戴口罩的必要性.(取
)
(结果保留整数,参考数据:
)



(1)求一天内被感染人数为





(2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有2位密切接触者,从某一名患者被感染,按第1天算起,第


(i)求数列


(ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率







(结果保留整数,参考数据:

元旦游戏中有20道选择题,每道选择题给了4个选项(其中有且只有1个正确).游戏规定:每题只选1项,答对得2个积分,否则得0个积分.某人答完20道题,并且会做其中10道题,其它试题随机答题,则他所得积分X的期望值
( )

A.25 | B.24 | C.22 | D.20 |
据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:
已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪
元,每单抽成
元;乙公司规定底薪
元,每日前
单无抽成,超过
单的部分每单抽成
元.
(1)分别求甲、乙快递公司的快递员的日工资
(单位:元)与送货单数
的函数关系式;
(2)若将频率视为概率,回答下列问题:
①记甲快递公司的快递员的日工资为
(单位:元),求
的分布列和数学期望;
②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
送货单数 | 30 | 40 | 50 | 60 | |
天数 | 甲 | 10 | 10 | 20 | 10 |
乙 | 5 | 15 | 25 | 5 |
已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪






(1)分别求甲、乙快递公司的快递员的日工资


(2)若将频率视为概率,回答下列问题:
①记甲快递公司的快递员的日工资为


②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.