- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- + 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
经过点
,它的左焦点为
,直线
与椭圆
交于
,
两点,
的周长为
.
(1)求椭圆
的方程;
(2)若点
是直线
上的一个动点,过点
作椭圆
的两条切线
、
,
分别为切点,求证:直线
过定点,并求出此定点坐标.(注:经过椭圆
上一点
的椭圆的切线方程为
).









(1)求椭圆

(2)若点











如图,在平面直角坐标系
中,已知椭圆
的离心率为
,右准线
,过椭圆的右焦点F作
轴的垂线
,椭圆的切线
与直线
分别交于
两点.

(1)求椭圆的标准方程;
(2)求
的值.










(1)求椭圆的标准方程;
(2)求

如图,在平面直角坐标系xOy中,椭圆C过点
,焦点F1(-
,0),F2(
,0),圆O的直径为F1F2.

(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于A,B两点.若△OAB的面积为
,求直线l的方程.




(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于A,B两点.若△OAB的面积为

如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”.已知椭圆
,点
是椭圆
上的任意一点,直线
过点
且是椭圆
的“切线”.

(1)证明:过椭圆
上的点
的“切线”方程是
;
(2)设
,
是椭圆
长轴上的两个端点,点
不在坐标轴上,直线
,
分别交
轴于点
,
,过
的椭圆
的“切线”
交
轴于点
,证明:点
是线段
的中点;
(3)点
不在
轴上,记椭圆
的两个焦点分别为
和
,判断过
的椭圆
的“切线”
与直线
,
所成夹角是否相等?并说明理由.







(1)证明:过椭圆



(2)设
















(3)点










给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
的一个焦点为
,其短轴上一个端点到
的距离为
.
(1)求椭圆
的方程;
(2)过点
作椭圆
的“伴随圆”
的动弦
,过点
、
分别作“伴随圆”
的切线,设两切线交于点
,证明:点
的轨迹是直线,并写出该直线的方程;
(3)设点
是椭圆
的“伴随圆”
上的一个动点,过点
作椭圆
的切线
、
,试判断直线
、
是否垂直?并说明理由.









(1)求椭圆

(2)过点









(3)设点









已知直线l:y=kx+m与椭圆
+
=1(a>b>0)恰有一个公共点P,l与圆x2+y2=a2相交于A,B两点.

(Ⅰ)求m(用a,b,k表示);
(Ⅱ)当k=-
时,△AOB的面积的最大值为
a2,求椭圆的离心率.



(Ⅰ)求m(用a,b,k表示);
(Ⅱ)当k=-


以椭圆
:
的中心
为圆心,
为半径的圆称为该椭圆的“准圆”,设椭圆
的左顶点为
,左焦点为
,上顶点为
,且满足
,
.
(1)求椭圆
及其“准圆"的方程;
(2)若过点
的直线
与椭圆
交于
、
两点,当
时,试求直线
交“准圆”所得的弦长;
(3)射线
与椭圆
的“准圆”交于点
,若过点
的直线
,
与椭圆
都只有一个公共点,且与椭圆
的“准圆”分别交于
,
两点,试问弦
是否为”准圆”的直径?若是,请给出证明:若不是,请说明理由.










(1)求椭圆

(2)若过点







(3)射线










