刷题首页
题库
高中数学
题干
已知椭圆
:
的右焦点
,且经过点
.
(1)求椭圆
的方程;
(2)点
是坐标原点,若直线
与椭圆
相切,过
作
,垂足为
,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-30 02:44:51
答案(点此获取答案解析)
同类题1
分别以双曲线
的焦点为顶点,以双曲线
的顶点为焦点作椭圆
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设点
的坐标为
,在
轴上是否存在定点
,过点
且斜率为
的动直线
交椭圆于
两点,使以
为直径的圆恒过点
,若存在,求出
的坐标;若不存在,说明理由.
同类题2
已知椭圆
的离心率为
,且过点
.
(1)求椭圆的标准方程;
(2)四边形
的顶点在椭圆上,且对角线
、
过原点
,若
,求证;四边形
的面积为定值.
同类题3
已知椭圆
的左、右焦点分别为点
,左、右顶点分别为
,长轴长为
,椭圆上任意一点
(不与
重合)与
连线的斜率乘积均为
.
(1)求椭圆
的标准方程;
(2)如图,过点
的直线
与椭圆
交于
两点,过点
的直线
与椭圆
交于
两点,且
,试问:四边形
可否为菱形?并请说明理由.
同类题4
已知椭圆
(
)的右焦点为
,
是椭圆上任意一点,且点
与两个焦点构成的三角形的面积的最大值为8.
(1)求椭圆
的方程;
(2)若
是上顶点,直线
l
交椭圆
于
,
两点,
的重心恰好为点
,求直线
l
的方程的一般式.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求椭圆的切线方程