- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- + 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点P(x0,3)与点Q(x0,4)分别在椭圆
=1与抛物线y2=2px(p>0)上.
(1)求抛物线的方程;
(2)设点A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是抛物线上的两点,∠AQB的角平分线与x轴垂直,求直线AB在y轴上的截距的取值范围.

(1)求抛物线的方程;
(2)设点A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是抛物线上的两点,∠AQB的角平分线与x轴垂直,求直线AB在y轴上的截距的取值范围.
已知椭圆C:
=1(a>b>0)的离心率为
,其内接正方形的面积为4.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设M为椭圆C的右顶点,过点
且斜率不为0的直线l与椭圆C相交于P,Q两点,记直线PM,QM的斜率分别为k1,k2,求证:k1k2为定值.


(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设M为椭圆C的右顶点,过点

已知点
为椭圆的两个焦点,其中左焦点
,椭圆的长轴长是短轴长的2倍,
为椭圆上一点。
(1)求椭圆的标准方程;
(2)若
,且点
在第一象限,求点
的坐标;
(3)若线段
中点在
轴上,求
的值.



(1)求椭圆的标准方程;
(2)若



(3)若线段


